当前位置: 首页 > news >正文

LeetCode 第33天 | 1005. K 次取反后最大化的数组和 135. 分发糖果 134. 加油站

1005. K 次取反后最大化的数组和
按照绝对值大小降序排序,然后将负值变正,如果所有负值都正了,但是还有k余量且为奇数,那就将绝对值最小值(最后一个元素)取反,否则直接结束。

class Solution {
public:
// 类内调用函数指针静态(猜的)static bool cmp(int a, int b){return abs(a)>abs(b);}int largestSumAfterKNegations(vector<int>& nums, int k) {// 按照绝对值从大到小排序sort(nums.begin(), nums.end(), cmp);for (int i = 0; i<nums.size(); i++) {if (k>0 && nums[i]<0){nums[i] *= -1;k--; }}int res = 0;if (k%2 == 1){nums[nums.size()-1] *= -1;}for (auto i:nums){res += i;}return res;}
};

135. 分发糖果

从左往右,找右边比左边大的,给右边赋值为左边加一。从右往左,找左边比右边大的,给左边赋值 右边加一与 左边本身 的较大值(兼顾左边)。

class Solution {
public:int candy(vector<int>& ratings) {int res = 0;vector<int> candyVec(ratings.size(), 1);for (int i = 1; i<ratings.size(); i++) {if (ratings[i]>ratings[i-1]) {candyVec[i] = candyVec[i-1]+1;}}for (int i = ratings.size()-2; i >= 0; i--) {if (ratings[i] > ratings[i+1]) {candyVec[i] = max(candyVec[i], candyVec[i+1]+1);}}for (auto i : candyVec){res += i;}return res;}
};

134. 加油站

用数组前缀和,从零开始找出发点,如果当前前缀和小于零,那么前面的都不能作为出发点,直接从后一个再出发。最后如果总和小于零就无法找到结果,返回-1。

class Solution {
public:int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {int totalSum = 0;int curSum = 0;int start = 0;for (int i = 0; i<gas.size(); i++) {totalSum += (gas[i] - cost[i]);curSum += (gas[i] - cost[i]);if (curSum < 0) {start = i+1;curSum = 0;}}if (totalSum < 0) return -1;return start;}
};

相关文章:

LeetCode 第33天 | 1005. K 次取反后最大化的数组和 135. 分发糖果 134. 加油站

1005. K 次取反后最大化的数组和 按照绝对值大小降序排序&#xff0c;然后将负值变正&#xff0c;如果所有负值都正了&#xff0c;但是还有k余量且为奇数&#xff0c;那就将绝对值最小值&#xff08;最后一个元素&#xff09;取反&#xff0c;否则直接结束。 class Solution {…...

PointMixer论文阅读笔记

MLP-mixer是最近很流行的一种网络结构&#xff0c;比起Transformer和CNN的节构笨重&#xff0c;MLP-mixer不仅节构简单&#xff0c;而且在图像识别方面表现优异。但是MLP-mixer在点云识别方面表现欠佳&#xff0c;PointMixer就是在保留了MLP-mixer优点的同时&#xff0c;还可以…...

[word] word分割线在哪里设置 #其他#经验分享

word分割线在哪里设置 在工作中有些技巧&#xff0c;可以快速提高工作效率&#xff0c;解决大部分工作&#xff0c;今天给大家分享word分割线在哪里设置的小技能&#xff0c;希望可以帮助到你。 1、快速输入分割线 输入三个【_】按下回车就是一条长直线&#xff0c;同样分别…...

C++ 音视频原理

本篇文章我们来描述一下音视频原理 音视频录制原理: 下面是对这张思维导图的介绍 摄像头部分: 麦克风采集声音 摄像头采集画面 摄像头采集回来的数据可以用RGB也可以用YUV来表示 图像帧帧率 一秒能处理多少张图像 图像处理 &#xff1a;调亮度 图像帧队列 :意思是将数据取…...

C# 只允许开启一个exe程序

C# 只允许开启一个exe程序 第一种方法 电脑只能启动一次再次点击显示当前exe程序 using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Runtime.InteropServices; using System.Threading.Tasks; using System.Win…...

【Java程序员面试专栏 分布式中间件】Redis 核心面试指引

关于Redis部分的核心知识进行一网打尽,包括Redis的基本概念,基本架构,工作流程,存储机制等,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 基础概念 明确redis的特性、应用场景和数据结构 什么是Redis,Redis有哪些应用场景 Redi…...

2024年【高处安装、维护、拆除】模拟考试题库及高处安装、维护、拆除实操考试视频

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 高处安装、维护、拆除模拟考试题库是安全生产模拟考试一点通生成的&#xff0c;高处安装、维护、拆除证模拟考试题库是根据高处安装、维护、拆除最新版教材汇编出高处安装、维护、拆除仿真模拟考试。2024年【高处安装…...

【QT+QGIS跨平台编译】之三十七:【Shapelib+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、Shapelib介绍二、Shapelib下载三、文件分析四、pro文件五、编译实践一、Shapelib介绍 Shapelib是一个开源的C库,用于读取、写入和操作ESRI Shapefile格式的地理矢量数据。 ESRI Shapefile是一种常见的地理信息系统(GIS)文件格式,用于存储地理矢量数据,包括…...

【机器学习基础】决策树(Decision Tree)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ ⭐特别提醒&#xff1a;针对机器学习&#xff0c;特别开始专栏&#xff1a;机器学习python实战 欢迎订阅&am…...

图神经网络DGL框架,graph classification,多个且不同维度的node feature 训练

node feature 维度不同 我现在有许多不同的图要加入训练&#xff0c;每个图的节点特征维度不同&#xff0c;第一张图n_weight特征有10条数据&#xff0c;第二张图n_weight特征有15条数据&#xff0c;但是训练的时候&#xff0c;需要维度都对其&#xff0c;所以直接做0 padding…...

蓝桥杯(Web大学组)2022国赛真题:用什么来做计算 A

判分标准 实现重置&#xff08;AC&#xff09;功能&#xff0c;得 1 分。 实现计算式子和结果显示功能&#xff0c;得 3 分。 实现计算功能&#xff0c;得 6 分。 应该按要求来就行吧&#xff0c;&#xff0c;一开始还在想是否要考虑小数点个数的问题还有式子是否有效…… 笔记…...

Linux POSIX信号量 线程池

Linux POSIX信号量 线程池 一. 什么是POSIX信号量&#xff1f;二. POSIX信号量实现原理三. POSIX信号量接口函数四. 基于环形队列的生产消费模型五. 线程池 一. 什么是POSIX信号量&#xff1f; POSIX信号量是一种用于同步和互斥操作的机制&#xff0c;属于POSIX&#xff08;Po…...

Sentinel(理论版)

Sentinel 1.什么是Sentinel Sentinel 是一个开源的流量控制组件&#xff0c;它主要用于在分布式系统中实现稳定性与可靠性&#xff0c;如流量控制、熔断降级、系统负载保护等功能。简单来说&#xff0c;Sentinel 就像是一个交通警察&#xff0c;它可以根据系统的实时流量&…...

python3 获取某个文件夹所有的pdf文件表格提取表格并一起合并到excel文件

下面是一个完整的示例&#xff0c;其中包括了merge_tables_to_excel函数的定义&#xff0c;并且假设该函数的功能是从每个PDF文件中提取第一个表格并将其合并到一个Excel文件中&#xff1a; import os from pathlib import Path import pandas as pd import pdfplumber …...

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后&#xff0c;直接放入Stable Diffusion相关目录即可使用&#xff0c;Stable Diffusion 模型就是我们日常所说的大模型&#xff0c;下载后放入**\webui\models\Stable-diffusion**目录&#xff0c;界面上就会展示相应的模型选项&#xff0c;如下图所示。作者…...

【JavaEE】_HTTP请求首行详情

目录 1. URL 2. 方法 2.1 GET方法 2.2 POST方法 2.3 GET与POST的区别 2.4 低频使用方法 1. URL 在mysql JDBC中已经提到过URL的相关概念&#xff1a; 如需查看有关JDBC更多内容&#xff0c;原文链接如下&#xff1a; 【MySQL】_JDBC编程-CSDN博客 URL用于描述某个资源…...

Linux第48步_编译正点原子的出厂Linux内核源码

编译正点原子的出厂 Linux 内核源码&#xff0c;为后面移植linux做准备。研究对象如下&#xff1a; 1)、linux内核镜像文件“uImage” 路径为“arch/arm/boot”&#xff1b; 2)、设备树文件“stm32mp157d-atk.dtb” 路径为“arch/arm/boot/dts” 3)、默认配置文件“stm32m…...

程序员为什么不喜欢关电脑?

程序员为什么不喜欢关电脑&#xff1f; 本人40 最近待业。&#xff0c;希望 3月前能再就业吧&#xff01;就不喜欢关电脑 这个问题来说是不好习惯。毕竟你的电脑不是服务器&#xff0c;哈哈。但是程序员都很懒&#xff0c;能自动化的&#xff0c;就让机器干。我在此之前 也工作…...

【初始RabbitMQ】了解和安装RabbitMQ

RabbitMQ的概念 RabbitMQ是一个消息中间件&#xff1a;他可以接受并转发消息。例如你可以把它当做一个快递站点&#xff0c;当你要发送一个包 裹时&#xff0c;你把你的包裹放到快递站&#xff0c;快递员最终会把你的快递送到收件人那里&#xff0c;按照这种逻辑 RabbitMQ 是 …...

Linux第56步_根文件系统第3步_将busybox构建的根文件系统烧录到EMMC

1、第1次将“rootfs”打包 1)、打开第1个终端&#xff0c;准备在“mnt”目录下创建挂载目录“rootfs”&#xff1b; 输入“ls回车” 输入“cd /mnt回车” 输入“ls回车”&#xff0c;查看“mnt”目录下的文件和文件夹 输入“sudo mkdir rootfs回车”&#xff0c;在“mnt”…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...