Open CASCADE学习|布尔运算后消除内部拓扑
在CAD建模中,布尔运算是一种逻辑运算方法,通过这种方法,可以创建、修改或组合几何对象。布尔运算主要包括并集(UNION)、交集(INTERSECT)和差集(SUBTRACT)三种运算。
并集(UNION):将两个或多个实体合并成一个整体。在CAD中,可以通过选择并集命令,然后依次选择要求并集的实体,完成并集操作后,这些实体将合并成一个整体。
交集(INTERSECT):取两个实体的公共部分保留为新对象,相交以外的部分删除。在CAD中,执行交集命令后,需要先选择第一个对象,然后选择第二个对象,系统会根据这两个对象生成一个新的实体,只包含它们的公共部分。
差集(SUBTRACT):从第一个选择的对象中减去第二个选择的对象。在CAD中,执行差集命令后,需要先选择被减对象,然后选择减去的对象,完成后,被减对象中减去减去对象的部分将被删除。
在OCCT中,布尔运算后,往往会出现缝合线。为了消除缝合线,我们需要用到工具类ShapeUpgrade_UnifySameDomain,该工具用于统一一个几何模型上的面和边。应该可以理解为,同一模型,同一面上的边,统一用边界的边来表示,其余的去掉。
This tool tries to unify faces and edges of the shape which lies on the same geometry. Faces/edges considering as 'same-domain' if a group of neighbouring faces/edges lying on coincident surfaces/curves. In this case these faces/edges can be unified into one face/edge. ShapeUpgrade_UnifySameDomain initialized by the shape and the next optional parameters: UnifyFaces - tries to unify all possible faces UnifyEdges - tries to unify all possible edges ConcatBSplines - if this flag set to true then all neighbouring edges which lays on the BSpline or Bezier curves with C1 continuity on their common vertices will be merged into one common edge The output result of tool is an unified shape All the modifications of initial shape are recorded during unifying. Method Generated() can be used to obtain the new (unified) shape from the old one.
TopoDS_Shape fuse = BRepAlgoAPI_Fuse(bigCube, smallCube);//先融合ShapeUpgrade_UnifySameDomain unif(fuse , false, true, false);unif.Build();fuse = unif.Shape();

相关文章:
Open CASCADE学习|布尔运算后消除内部拓扑
在CAD建模中,布尔运算是一种逻辑运算方法,通过这种方法,可以创建、修改或组合几何对象。布尔运算主要包括并集(UNION)、交集(INTERSECT)和差集(SUBTRACT)三种运算。 并集…...
【数据仓库】主题域和数据域
数据域与主题域区别 https://www.cnblogs.com/datadance/p/16898254.html 数据域是自下而上,以业务数据视角来划分数据,一般进行完业务系统数据调研之后就可以进行数据域的划分。针对公共明细层(DWD)进行主题划分。主题域则自上而…...
C#,二分法(Bisection Method)求解方程的算法与源代码
1 二分法 二分法是一种分治算法,是一种数学思维。 对于区间[a,b]上连续不断且f(a)f(b)<0的函数yf(x),通过不断地把函数f(x)的零点所在的区间…...
Portainer安装/快速上手
前置: 管理docker容器的工具 Portainer: Container Management Software for Kubernetes and Docker https://docs.portainer.io/v/ce-2.9/start/install/server/docker/linux 官网安装教程 Install Portainer CE with Docker on Linux - Portainer Documentat…...
恢复被.target勒索病毒加密的数据文件:拒绝向.target勒索病毒支付赎金
引言: 在当今数字时代,勒索病毒已成为网络安全领域的一大威胁,而.target勒索病毒是其中引起广泛关注的一种变种。本文将深入探讨.target勒索病毒的特点以及被其加密的数据文件恢复方法。数据的重要性不容小觑,您可添加我们的技术…...
【Linux网络编程六】服务器守护进程化Daemon
【Linux网络编程六】服务器守护进程化Daemon 一.背景知识:前台与后台二.相关操作三.Linux的进程间关系四.自成会话五.守护进程四步骤六.服务器守护进程化 一.背景知识:前台与后台 核心知识就是一个用户在启动Linux时,都会给一个session会话&a…...
MySQL之json数据操作
1 MySQL之JSON数据 总所周知,mysql5.7以上提供了一种新的字段格式json,大概是mysql想把非关系型和关系型数据库一口通吃,所以推出了这种非常好用的格式,这样,我们的很多基于mongoDB的业务都可以用mysql去实现了。当然…...
【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(5)数据管理
今天学习了数据管理,以及数据管理和数据治理的区别和联系。 数据管理:利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程其目的在于充分有效地发挥数据的作用。 实现数据有效管理的关键是数据组织。 数据管理和数据治理的区别&am…...
Linux满载CPU和运行内存的方法
查询CPU详细信息命令如下: 查看物理CPU型号: cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c查看物理CPU个数 cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l查看每个物理CPU中core的个数(即核数) cat /proc/cpuinfo…...
每日五道java面试题之java基础篇(九)
目录: 第一题 你们项⽬如何排查JVM问题第二题 ⼀个对象从加载到JVM,再到被GC清除,都经历了什么过程?第三题 怎么确定⼀个对象到底是不是垃圾?第四题 JVM有哪些垃圾回收算法?第五题 什么是STW? 第…...
spring @Transactional注解参数详解
事物注解方式: Transactional 当标于类前时, 标示类中所有方法都进行事物处理 , 例子: 1 Transactional public class TestServiceBean implements TestService {}当类中某些方法不需要事物时: Transactional public class TestServiceBean implements TestService {private…...
D - 串结构练习——字符串连接
串结构练习——字符串连接 Description 给定两个字符串string1和string2,将字符串string2连接在string1的后面,并将连接后的字符串输出。 连接后字符串长度不超过110。 Input 输入包含多组数据,每组测试数据包含两行,第一行代表s…...
什么样的服务器是高性能服务器?
首先,高性能服务器应具备高处理能力。随着业务的不断扩展和数据量的爆炸性增长,高性能服务器需要具备强大的计算能力,能够快速处理各种复杂的业务和数据。这要求高性能服务器采用先进的处理器技术,如多核处理器、GPU加速等&#x…...
数学建模【线性规划】
一、线性规划简介 线性规划通俗讲就是“有限的资源中获取最大的收益”(优化类问题)。而且所有的变量关系式都是线性的,不存在x、指数函数、对数函数、反比例函数、三角函数等。此模型要优化的就是在一组线性约束条件下,求线性目标…...
ChatGPT的大致原理
国外有个博主写了一篇博文,名字叫TChatGPT: Explained to KidsQ」, 直译过来就是,给小孩子解释什么是ChatGPT。 因为现实是很多的小孩子已经可以用父母的手机版ChatGPT玩了 ,ChatGPT几乎可以算得上无所不知,起码给小孩…...
蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记
1 bfs广度优先搜索 1.1 是什么 1.2怎么实现 2案例学习 2.1.走迷宫 2.2.P1443 马的遍历 2.3. 九宫重排(看答案学的,实在写不来) 2.4.青蛙跳杯子(学完九宫重排再做bingo) 2.5. 长草 3.总结 1 bfs广度优先搜索 【P…...
轮播图的五种写法(原生、vue2、vue3、react类组件,react函数组件)
轮播图效果是一种在网页或应用程序中展示多张图片或内容的方式,通常以水平或垂直的方式循环播放。本文使用原生、vue2、vue3、react类组件,react函数组件五种写法实现了简单的轮播图效果,需要更多轮播效果需要再增加样式或者动画。 淡入淡出效果:每张图片渐渐淡入显示,然后…...
【MySQL】高度为2和3时B+树能够存储的记录数量的计算过程
文章目录 题目答案高度为2时的B树高度为3时的B树总结 GPT4 对话过程 题目 InnoDB主键索引的Btree在高度分别为 2 和 3 时,可以存储多少条记录? 答案 高度为2时的B树 计算过程: 使用公式 ( n 8 ( n 1 ) 6 16 1024 ) (n \times 8 …...
软件著作书 60页代码轻松搞定!(附exe和代码)
最近做了一个软件,准备去申请软件著作书,看着那60页的文档,确实难搞,不过幸好会用一点点python,就自己用python写了一个读取所有文件代码的程序,使用起来也很简单,过来分享一下 链接࿱…...
阿里文档类图像的智能识别,文档分类自定义分类器
阿里云文档类图像智能识别服务为用户提供了强大的文档处理能力,可以将文档图像中的文本内容、表格数据和结构化信息自动识别并提取出来。而自定义分类器则允许用户根据自己的需求,训练出更适合自己场景的文档分类模型。本文将详细介绍阿里云文档类图像智…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
