人脸高清算法GFPGAN之TensorRT推理
1. 综述
最近由于做数字人项目,采用的是wav2lip + GFPGAN进行人脸面部高清,但GFPGAN模型本身比较大,所以想着使用TensorRT来代替原始的pth推理看看能否提升运行速度,于是便开始了这趟windows1之下进行GFPGAN的trt推理的折腾之旅。
2. 环境
我会提供一个我写好GFPGAN的trt推理的完整工程包。我的环境是windows10 + cuda11.7 + cudnn 8.9.2 + TensorRT-8.5.1.7 + pycuda_cuda115 + python3.8的虚拟环境。
2.1 TensorRT的环境安装
TensorRT的环境安装参考英伟达官方TensorRT8.x下载地址
2.1.1 pip安装TensorRT文件夹中的.whl文件
进入python文件夹
conda activate py38_torch # 激活你的python3.8虚拟环境
pip install tensorrt-8.5.1.7-cp38-none-win_amd64.whl
进入graphsurgeon文件夹
pip install graphsurgeon-0.4.6-py2.py3-none-any
进入onnx_graphsurgeon文件夹
pip install onnx_graphsurgeon-0.3.12-py2.py3-none-any.whl -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
进入uff文件夹
pip install uff-0.6.9-py2.py3-none-any.whl
还有很重要的一步就是将TensorRT的lib所有文件复制到cuda的bin下面,如下图所示
验证
import tensorrt as trt
print(trt.__version__)
2.2 pycuda安装
进入trt_inference/package下面
pip install pycuda-2021.1+cuda115-cp38-cp38-win_amd64.whl
3. 模型转换
3.1 pth2onnx(将GFPGAN的v1.4的pth模型转换为trt)
进入trt_inference/model_transformer/onnx下面
python gfpgan2onnx.py --src_model_path GFPGANv1.4.pth --dst_model_path gfpganv1.4.onnx --img_size 512
pip install onnx-simplifier
python -m onnxsim gfpganv1.4.onnx gfpganv1.4_sim.onnx
所以就得到了trt_inference/model_transformer/onnx/gfpganv1.4_sim.onnx
3.2 onnx2trt(将GFPGAN的onnx转化为TensorRT的trt)
进入trt_inference/model_transformer/trt下面
python gfpgan2onnx2trt.py --src_model_path ../onnx/gfpganv1.4_sim.onnx --dst_model_path gfpganv1.4.trt
所以就得到了trt_inference/model_transformer/trt/gfpganv1.4.trt模型
4 pth和trt模型推理结果比较
进入工程文件GFPGAN-master下面
4.1 使用pytorch的pth模型去跑视频生成
修改gfpgan/utils.py下面的如图两行
然后直接在GFPGAN-master下面运行 python run.py --face_path inputs/wav2lip.mp4 --audio_path inputs/vyrxlgmx.mp3 --final_path result.mp4 --outputs_path output,则会在output下面生成result.mp4, 生成时间为: 848.8s, 总的推理时间为: 5.8s
4.2 使用TensorRT的trt模型去跑视频生成
修改gfpgan/utils.py下面的如图所示
然后直接在GFPGAN-master下面运行 python run.py --face_path inputs/wav2lip.mp4 --audio_path inputs/vyrxlgmx.mp3 --final_path result.mp4 --outputs_path output,则会在output下面生成result.mp4, 生成时间为: 909.6s, 总的推理时间为: 11.8s
完整的工程代码,请看百度网盘链接: ,提取码:
相关文章:

人脸高清算法GFPGAN之TensorRT推理
1. 综述 最近由于做数字人项目,采用的是wav2lip GFPGAN进行人脸面部高清,但GFPGAN模型本身比较大,所以想着使用TensorRT来代替原始的pth推理看看能否提升运行速度,于是便开始了这趟windows1之下进行GFPGAN的trt推理的折腾之旅。…...

05 OpenCV图像混合技术
文章目录 理论算子示例 理论 其中 的取值范围为0~1之间 算子 addWeighted CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta,double gamma, OutputArray dst, int dtype -1 ); 参数1:输入图像Mat …...

2326. 王者之剑(网络流,最小割,最大权独立集,最小点权覆盖)
活动 - AcWing 给出一个 nm 网格,每个格子上有一个价值 vi,j 的宝石。 Amber 可以自己决定起点,开始时刻为第 0 秒。 以下操作,在每秒内按顺序执行。 若第 i 秒开始时,Amber 在 (x,y),则 Amber 可以拿走 (x,y) 上的…...

内网信息搜集
目录 内网基础知识 基本流程图 怎么判断是否在域内 常规信息类收集-应用&服务&权限等 cs信息搜集 bloodhound安装及使用 内网基础知识 工作组:将不同的计算机按照功能分别列入不同的组,想要访问某个部门的资源,只要在【网络】里…...
微型力量,巨大作用:嵌入式技术的创新应用
微型力量,巨大作用:嵌入式技术的创新应用 嵌入式技术是一种将计算机技术嵌入到各种设备和系统中的技术,它的应用范围非常广泛,包括但不限于智能手机、智能家居、医疗设备、工业自动化等领域。这种微型的技术在各个领域中发挥着巨…...

华为 OD 一面算法原题
2.2 亿彩票公布调查结果 昨天,闹得沸沸扬扬的《10 万中 2.2 亿》的彩票事件,迎来了官方公告。 简单来说,调查结果就是:一切正常,合规合法。 关于福利彩票事件,之前的推文我们已经分析过。 甚至在后面出现《…...

FPGA-学会使用vivado中的存储器资源ROM(IP核)
问题: 某芯片,有500个寄存器,需要在上电的时候由FPGA向这些寄存器中写入初始值,初始值已经通过相应的文档给出了具体值,这些值都是已知的。 分析关键点: 数据量比较多(Verilog代码,通过case语句、always语句这种查找表的方式,数…...

自测-1 打印沙漏
文章预览: 题目算法代码 题目 算法 以前做过这个,那次是c语言写的,一点一点处理一层一层完成,这次我换了一种语言用了另一种思想使用递归去写,还是我们要先求出应该有多少层这个很容易,中间输出部分我们算…...
高级语言期末2009级B卷(计算机学院)
1.编写一个名为mystrcpy的函数,实现将字符串str1的偶数位子的字符的拷贝到另一个字符串str2中。并编写主函数,在主函数中从键盘读入一个长度<100的字符串str1,然后调用函数mystrcpy;最后输出str2,例如,读…...
c# using 用法
using命令空间 导入命名空间中的所有类型 如:using System.Text; using别名 using别名包括详细命名空间信息的具体类型,这种做法有个好处就是当同一个cs引用了两个不同的命名空间,但两个命名空间都包括了一个相同名字的类型的时候。当需要…...

【Django】执行查询—跨关系查询中的跨多值关联问题
跨多值查询 跨越 ManyToManyField 或反查 ForeignKey (例如从 Blog 到 Entry )时,对多个属性进行过滤会产生这样的问题:是否要求每个属性都在同一个相关对象中重合。 filter() 先看filter(),通过一个例子看…...

Spring八股 常见面试题
什么是Spring Bean 简单来说,Bean 代指的就是那些被 IoC 容器所管理的对象。我们需要告诉 IoC 容器帮助我们管理哪些对象,这个是通过配置元数据来定义的。配置元数据可以是 XML 文件、注解或者 Java 配置类。 将一个类声明为 Bean 的注解有哪些? Com…...

今年面试潮,说实话这个开发岗能不能冲?
自打华为 2019 年发布鸿蒙操作系统以来,网上各种声音百家争鸣。尤其是 2023 年发布会公布的鸿蒙 4.0 宣称不再支持 Android,更激烈的讨论随之而来。 当下移动端两大巨头瓜分了绝大部分市场: iOS 是闭源的,只有唯一的一家厂商&am…...

【前端素材】推荐优质在线花卉商城电商网页Flowery平台模板(附源码)
一、需求分析 1、系统定义 在线花卉商城是一个通过互联网提供花卉销售服务的电子商务平台,用户可以在该平台上浏览、选择和购买各种花卉产品。 2、功能需求 在线花卉商城是一个通过互联网提供花卉销售服务的电子商务平台,用户可以在该平台上浏览、选…...

★【递归】【构造二叉树】Leetcode 106.从中序与后序遍历序列构造二叉树
★【递归前序】【构造二叉树】Leetcode 106.从中序与后序遍历序列构造二叉树 105. 从前序与中序遍历序列构造二叉树 106.从中序与后序遍历序列构造二叉树:star:思路分析递归解法 105. 从前序与中序遍历序列构造二叉树递归解法 凡是构造二叉树>>>>>>>>&…...
linux检测和重启python脚本
#!/bin/bash# 检测Flask应用是否挂了 if ! pgrep -f "flask_app.py" >/dev/null; then# 重启Flask应用cd /path/to/your/flask/appnohup python3 flask_app.py >/dev/null 2>&1 & fi这是一个简单的bash脚本,用于检测Flask应用是否挂掉&a…...

HTML+CSS+JS:花瓣登录组件
效果演示 实现了一个具有动态花朵背景和简洁登录框的登录页面效果。 Code <section><img src"./img/background.jpeg" class"background"><div class"login"><h2>Sign In</h2><div class"inputBox"…...

Unity中URP下实现水体(水面反射)
文章目录 前言一、原理1、法一:使用立方体纹理 CubeMap,作为反射纹理使用2、法二:使用反射探针生成环境反射图,所谓反射的采样纹理 二、实现水面反射1、定义和申明CubeMap2、反射向量需要什么3、计算 N ⃗ \vec{N} N 4、计算 V ⃗…...
基于FastJson实现Json数据文件导入导出解析
哈喽,大家好,我是灰小猿,一个超会写bug的程序猿! 今天来记录一个在项目实战中比较实用的方法,主要是针对一些需要存在简单数据文件导入导出的场景,如:数据文件的简单备份、软件升版前后配置导入…...

JVM内存分配与垃圾收集流程
3.8 实战:内存分配与回收策略 3.8.1 对象优先在Eden分配 大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。 3.8.2 大对象直接进入老年代 HotSpot虚拟机提供了-XX:Prete…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...

数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...