当前位置: 首页 > news >正文

【剑指Offer-Java】包含min函数的栈?

题目

定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.min(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.min(); --> 返回 -2.

提示:
各函数的调用总次数不超过 20000 次

实现

  • 函数调用次数限制,因此min不能直接遍历大小,选择用两个栈,栈B用于存储较小数,严格降序排列。
  • 直到A空,B才为空!
class MinStack {Stack<Integer> A, B;public MinStack() {A = new Stack<>();#栈 B = new Stack<>();}public void push(int x) {A.add(x);if(B.empty() || B.peek() >= x)B.add(x);}public void pop() {if(A.pop().equals(B.peek()))B.pop();}public int top() {return A.peek();}public int min() {return B.peek();}
}

总结

  • Stack
  • add(x)
  • peek()
  • pop()
  • empty()

相关文章:

【剑指Offer-Java】包含min函数的栈?

题目 定义栈的数据结构&#xff0c;请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中&#xff0c;调用 min、push 及 pop 的时间复杂度都是 O(1)。 MinStack minStack new MinStack(); minStack.push(-2); minStack.push(0); minStack.push(-3); minStack.min()…...

红队APT——邮件钓鱼攻击SwaksOffice漏洞RLO隐藏压缩释放

目录 (一)采用自己搭建Ewomail配合Swaks 0x01 搭建过程 0x02 配置转发信息 (二)网页钓鱼-克隆修改...

【Java|基础篇】超详细讲解运算符

文章目录1. 什么是运算符2. 算术运算符隐式类型转换强制类型转换字符串的拼接字符相加自增和自减运算符3.赋值运算符4. 关系运算符5. 逻辑运算符短路与(&&)和短路或(||)6.三目运算符7. 位运算符8. 移位运算1. 什么是运算符 运算符用于执行程序代码运算&#xff0c;会针…...

Promise-异步回调

1.理解Promise promise是ES6提出的异步编程的新的解决方案&#xff0c;通过链式调用解决ajax回调地狱 从语法上看&#xff0c;promise是一个构造函数&#xff0c;自己身上有all、reject、resolve方法&#xff0c;原型上有then、catch方法 从功能上看&#xff0c;Promise对象用…...

【设计模式之美 设计原则与思想:设计原则】21 | 理论七:重复的代码就一定违背DRY吗?如何提高代码的复用性?

在上一节课中&#xff0c;我们讲了 KISS 原则和 YAGNI 原则&#xff0c;KISS 原则可以说是人尽皆知。今天&#xff0c;我们再学习一个你肯定听过的原则&#xff0c;那就是 DRY 原则。它的英文描述为&#xff1a;Don’t Repeat Yourself。中文直译为&#xff1a;不要重复自己。将…...

深度学习 | 入个Pytorch的小门

本文主要参考 1’ 2’ 3 更新&#xff1a;2023 / 3 / 1 深度学习 | 入个Pytorch的小门 - 1. 常见数据操作创建操作算术操作加法索引形状查询形状改变形状广播机制广播条件运算数据类型转换Tensor转NumPyNumPy转Tensor线性回归线性回归的基本要素1. 模型2. 数据集3. 损失函数4.…...

应用上云指导

应用上云指导方法论。应用上云指传统应用迁移到云上&#xff0c;云上应用采用K8S部署。本文旨在提供一种方法、流程&#xff0c;指导应用上云&#xff0c;以求优化上云工作&#xff0c;提供应用上云效率。主要包含以下内容&#xff1a;应用上云工作角色、分工应用上云标准流程及…...

进程概念~

进程概念 &#xff08;冯诺依曼体系结构&#xff0c;操作系统&#xff0c;进程概念&#xff0c;进程状态&#xff0c;环境变量&#xff0c;程序地址空间&#xff09; 冯诺依曼体系结构&#xff1a;&#xff08;计算机硬件体系结构&#xff09; 输入设备&#xff0c;输出设备&a…...

三天吃透Java基础八股文

本文已经收录到Github仓库&#xff0c;该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点&#xff0c;欢迎star~ Github地址&#xff1a;https://github.com/…...

YOLOv8训练自己的数据集(超详细)

一、准备深度学习环境本人的笔记本电脑系统是&#xff1a;Windows10YOLO系列最新版本的YOLOv8已经发布了&#xff0c;详细介绍可以参考我前面写的博客&#xff0c;目前ultralytics已经发布了部分代码以及说明&#xff0c;可以在github上下载YOLOv8代码&#xff0c;代码文件夹中…...

【洛谷 P1088】[NOIP2004 普及组] 火星人 题解(全排列+向量)

[NOIP2004 普及组] 火星人 题目描述 人类终于登上了火星的土地并且见到了神秘的火星人。人类和火星人都无法理解对方的语言&#xff0c;但是我们的科学家发明了一种用数字交流的方法。这种交流方法是这样的&#xff0c;首先&#xff0c;火星人把一个非常大的数字告诉人类科学…...

基于混合蛙跳算法优化SVM的滚动轴承故障诊断python实现

1.混合蛙跳算法(SFLA)原理 混合蛙跳算法(SFLA)是一种受自然生物模仿启示而产生的基于群体的协同搜索方法,由局部搜索和全局信息交换两部分组成。 混合蛙跳算法中,每个青蛙的位置代表了一个可行解。青蛙在沼泽中跳跃,沼泽在离散的地方有很多石头,青蛙可以跳过这些石头来找…...

如何让AI帮你干活-娱乐(2)

背景&#xff1a;好容易完成朋友的任务&#xff0c;帮忙给小朋友绘画比赛生成一些创意参考图片。他给我个挑战更高的问题&#xff0c;是否可以帮他用AI生成一些视频。这个乍一听以现在AI技术根本不太可能完成。奈何他各种坚持&#xff0c;无奈被迫营业。苦脸接受了这个不可能完…...

文件异步多备常用方案

业务需求上经常存在需要对同一个文件进行双上传&#xff0c;上传到不同云存储桶&#xff0c;以防出现某一个云厂商因各种意外导致自身服务出现不可用的情况&#xff0c;当然&#xff0c;还有其他措施可以避免&#xff0c;现在只针对通过程序业务代码而双写存储的这个场景。 业务…...

java面试八股文之------Redis夺命连环25问

java面试八股文之------Redis夺命连环25问&#x1f468;‍&#x1f393;1.为什么redis这么快&#x1f468;‍&#x1f393;2.redis的应用场景&#xff0c;为什么要用&#x1f468;‍&#x1f393;3.redis6.0之前为什么一直不使用多线程&#xff0c;6.0为甚么又使用多线程了&…...

【数据结构】AVL平衡二叉树底层原理以及二叉树的演进之多叉树

1.AVL平衡二叉树底层原理 背景 二叉查找树左右子树极度不平衡&#xff0c;退化成为链表时候&#xff0c;相当于全表扫描&#xff0c;时间复杂度就变为了O(n) 插入速度没影响&#xff0c;但是查询速度变慢&#xff0c;比单链表都慢&#xff0c;每次都要判断左右子树是否为空 需…...

K8S篇-安装nfs插件

前言 有关k8s的搭建可以参考&#xff1a;http://t.csdn.cn/H84Zu 有关过程中使用到的nfs相关的nas&#xff0c;可以参考&#xff1a; http://t.csdn.cn/ACfoT http://t.csdn.cn/tPotK http://t.csdn.cn/JIn27 安装nfs存储插件 NFS-Subdir-External-Provisioner是一个自动配置…...

xmu 离散数学 卢杨班作业详解【4-7章】

文章目录第四章 二元关系和函数4.6.2911121618.120.222.1232834第五章 代数系统的一般概念2判断二元运算是否封闭348111214第六章 几个典型的代数系统1.5.6.7.11.12151618第七章 图的基本概念12479111215第四章 二元关系和函数 4. A{1,2,3} 恒等关系 IA{<1,1>,<2,2…...

多重背包问题中的二进制状态压缩

1.多重背包问题 经典的多重背包问题和01背包问题的相似之处在于二者的一维遍历顺序都是从右侧往左侧遍历。 同时多重背包的一维写法不比二维写法降低时间复杂度。 2.多重背包标准写法:(平铺展开形式&#xff09; class Solution {public int maxValue(int N, int C, int[] s…...

汇编语言程序设计(四)之汇编指令

系列文章 汇编语言程序设计&#xff08;一&#xff09; 汇编语言程序设计&#xff08;二&#xff09;之寄存器 汇编语言程序设计&#xff08;三&#xff09;之汇编程序 汇编指令 1. 数据传输指令 指令包括&#xff1a;MOV、XCHG、XLAT、LEA、LDS、LES、PUSH、POP、PUSHF、LA…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

[特殊字符] 手撸 Redis 互斥锁那些坑

&#x1f4d6; 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作&#xff0c;想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁&#xff0c;也顺便跟 Redisson 的 RLock 机制对比了下&#xff0c;记录一波&#xff0c;别踩我踩过…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

C# WPF 左右布局实现学习笔记(1)

开发流程视频&#xff1a; https://www.youtube.com/watch?vCkHyDYeImjY&ab_channelC%23DesignPro Git源码&#xff1a; GitHub - CSharpDesignPro/Page-Navigation-using-MVVM: WPF - Page Navigation using MVVM 1. 新建工程 新建WPF应用&#xff08;.NET Framework) 2.…...