当前位置: 首页 > news >正文

1.4 条件概率与乘法公式

1.4.1 条件概率

在实际问题中,除了直接考虑某事件 B 发生的概率P(B)外,有时还会碰到这样的问题,就是“在事件A 已经发生的条件下,事件B 发生的概率”。一般情况下,后概率与前一概率不同,为了区别,我们常把后者称为条件概率,记为P(BIA),读作事件A 发生条件下事件B 发生的条件概率。 先看一个例子。

【例1.13】 某厂的100件产品中有5件是不合格品,而5件不合格品中有3件次品,2件废品.现从100 件产品中任意抽取一件,假定每件产品被抽到的可能性都相同,求

(1)抽到次品的概率;

(2)在抽到的产品是不合格品的条件下,产品是次品的概率

题解:

例 1.13 条件概率类型一——某工厂次品率

定义1.6 设A 与B是同一样本空间中的两个事件,若P(A)>0,则称

P(B|A)===

为在事件 A 发生下的事件 B 发生的条件概率

不难验证,条件概率P(•IA)满足概率定义1.5中的三条公理:

(1)非负性:对任意事件 B,P(BIA)≥0

(2)规范性:P(RIA)=1;

(3)可列可加性:设事件B1,B2,…B3,Bn,…两两互不相容,则P(Bi|A)=P(Bi|A).

所以,条件概率P(•lA)也满足概率的其他所有性质.

【例 1.14】 某家庭中有两个孩子,己知其中至少有一个是男孩,求两个都是男孩

的概率(假设男、女孩出生率相同).

解用g代表女孩,6代表男孩,A 一“该家庭中至少有一个男孩”,B

一“两个

都是男孩”,本题求的是条件概率P(BIA).该家庭两个孩子的情况无非是 66,bg

§6,g§四种情况之一,即2=166,bg,gb,gg),B一^66),A={66,6g,g6〉,所以有

1

P(A) =

3 , P (B) =

4

4

,故

P(AB)

P(B A)=

P(A)

P(B)

P(A

1/4

=1/3.

3/4

注在事件 A 发生条件下,该家庭两个孩子的情況只能是 66,bg,g6三种情况

之一,即此时样本空间缩小为 2一{66,6g,g6)=A,B={66),所以根据古典概型有

P(BIA)=

-这种解法称为求条件概率的缩小样本空问法.

【例 1.15】 设某种动物以出生起活 20 岁以上的概率为 80%,活25 岁以上的概

率为 40%.如果现在有一个 20岁的这种动物,求它能活25 岁以上的概率

解 设事件 A一“该种动物能活 20 岁以上”,事件B一“该种动物能活 25岁以

上”,按题意,P(A)=0.8,由于BCA,所以P(AB)=P(B)=0.4.由条件概率定义

P(B A)

P(AB)

P(A)

0.4

= 0.5.

0.8

1,但

1.4.2 乘法公式

由条件概率公式容易得到下面定理.

定理 11设1 与B是同一样本空间中的两个事件,如果P(A)二0,则P(AB) =P(A)P(BlA).

(1.3

如果P(B)二0,则

PC4B)=PBPCAIB).

上面式(1.3),式(1.4)均称为事件概率的乘法公式

定理1.1容易推广到任意有限多个事件积事件概率的情况.

例如,若卩(A,Az•A,=1)二0,则

P(A,A,.A,)=PCAPCA,IA PCAs IA A2-PCA, IA,Az•A,-1.

(1.4

(1.5)

事实上,因为

PA,)≥P(A, AD >PCA,A,A,二…≥PCA Az•A13 ≥0,

所以式(1.5)中各条件概率均有意义,由条件概率定义,得

P(A,)PCA, IA,PCA, IAIA2.PCA, IA,A2.An-1

= P(A.) .

P(A,4.)

PCA:A:A,)

PCA,)

••

P(A A •An)

P (A,A,)

PCA,A2.•A,-1)

-PCA A•A,).

【例1.16】 某人忘记了电话号码的最后一位数字,因而他随意地拨号•求他拔号

不超过三次而接通电话的概率.

解设A,一“第之次接通电话”,i=1,2,3,B一“拨号不超过了次接通电话”,则

B=AI U A,A, U A A.As.

利用概率的有限可加性和乘法公式,有

P(B)=PCA,)+PCAIAD +P(A,A,A.)

= P(A;) + P (A) P (A2 l A,) + P(A,)P (A2 | A,)P (A, | A, A,)

1

10*

9

10 t.

9

+ %x.

1

= X

3

8

10*

【例 1.17】 猎手在距猎物 10 米处开枪,击中的概率为0.6.若击不中,待开第

枪时猜物已逃至30米远处,此时击中的概率为 0.25,若再击不中,则猎物已逃至 50

米远处,此时只有0.1的击中概率.求猎手三枪内击中猎物的概率

解以A,=“第之枪击中猎物”,i=1,2,3,则所求概率为 PCA UA,UA..

P(A, U A2 U A.) = 1 - P(A, UA, U A.) =1 - P(A, A, A .)

=1 - P(A,) P(A. | A,)P (A, | A, A,)

=1 - [1 - P (A,)J1 - P (A2 | A,)I[1 - P(A, | A, A ,)]

=1 - (1 - 0.6) (1 - 0.25) (1

=01)

=0.73.

相关文章:

1.4 条件概率与乘法公式

1.4.1 条件概率在实际问题中,除了直接考虑某事件 B 发生的概率P(B)外,有时还会碰到这样的问题,就是“在事件A 已经发生的条件下,事件B 发生的概率”。一般情况下,后概率与前一概率不同,为了区别,我们常把后者称为条件概率,记为P(B…...

VITA/PYTHON/LUPA families

Image Sensor Group Top to Bottom Portfolio in Industrial Imaging Machine Vision • Factory automation and inspection • Robotic vision • Biometrics High-End Surveillance • Aerial Surveillance • Intelligent Traffic Systems (ITS) • Mapping Medical and Sc…...

ChatGPT概述:从模型训练到基本应用的介绍

ChatGPT概述:从模型训练到基本应用的介绍 目录 本文是对ChatGPT的由来、训练过程以及实际落地场景的解释,主要内容包括如下三个方面: 1、ChatGPT是什么 2、ChatGPT的原理 3、ChatGPT的思考 4、ChatGPT的应用 ChatGPT是什么 ChatGPT可能是近…...

C语言实现扫雷【详细讲解+全部源码】

扫雷的实现1. 配置运行环境2. 扫雷游戏的初步实现2.1 建立扫雷分布模块2.2 创建名为board的二维数组并进行棋盘初始化2.3 打印棋盘3. 接下来该讨论的事情3.1 布置雷3.2 排查雷3.3 统计坐标周围有几个雷4. 完整扫雷游戏的实现4.1 game.h4.2 game.c4.3 扫雷.c1. 配置运行环境 本游…...

Vue2.0开发之——购物车案例-Goods组件封装-商品名称和图片(46)

一 概述 循环渲染Goods组件为Goods组件封装title属性为Goods组件封装pic属性 二 循环渲染Goods组件 2.1 App.vue中导入Goods组件 import Goods from /components/Goods/Goods.vue2.2 App.vue中注册Goods组件 components: {Header,Goods}2.3 循环渲染每一个商品的信息 <…...

0201基础-组件-React

1 组件和模块 1.1 模块 对外提供特定功能的js程序&#xff0c;一般就是一个js文件 为什么拆分模块呢&#xff1f;随着业务逻辑增加&#xff0c;代码越来越多&#xff0c;越来越复杂。作用&#xff1a;复用js&#xff0c;简化js&#xff0c;提高js运行效率 1.2 模块化 当应用…...

论文笔记 | Conducting research in marketing with quasi-experiments

这篇论文是Journal of Marketing上的论文&#xff0c;讲了使用准实验来进行论文研究的一些事项。外生性识别的来源、几种准实验方法的注意点还有内生性的解决。 这篇论文对于准实验或者是平常论文的展开有一个非常友善的指导功能&#xff0c;可以阅读~ 摘要&#xff1a;本文旨…...

有关Android导览(Android Navigation component)

文章目录小结有关Android导览(Android Navigation component)碰到的问题参考小结 在使用Android导览(Android Navigation component)碰到很多问题。解决了一些问题&#xff0c;但是“Skipped xxx frames! The application may be doing too much work on its main thread”这样…...

01 C语言计算

C语言计算 1、变量 用途&#xff1a;需要存放输入的数据 定义格式&#xff1a;数据类型 变量名&#xff08;用于区分其他变量&#xff09; 变量名格式&#xff1a;只能由字母/下划线/数字构成&#xff0c;首位不能是数字&#xff1b;且变量名不能是标识符 **变量赋值和初始…...

java单元测试简介(基于SpringBoot)

java单元测试简介&#xff08;基于SpringBoot&#xff09;mockitomock创建mock对象的另一种方式&#xff1a;Mockverifystubbing(存根)Spy&#xff08;间谍&#xff09;mock 静态方法mockito在springboot mock中的实战mockito 通常&#xff0c;在我们写单测时&#xff0c;会遇…...

Linux常用命令操作

文件目录操作 查看文件列表 ls #输出列表信息 ls -l #输出详细列表信息 ls -a #输出隐藏文件 ls -la #输出包含的隐藏文件及详细信息 ll # ls-l的缩写rwx分别对应读取&#xff0c;写入&#xff0c;执行权限&#xff0c;前面有d代表是文件夹 创建文件 touch file.txt #创建…...

SpringCloud GateWay配置—TLS 和 SSL、Http超时配置

一、TLS 和 SSL网关可以按照通常的 Spring 服务器配置侦听 HTTPS 上的请求。 以下示例演示如何执行此操作&#xff1a;application.ymlserver:ssl:enabled: truekey-alias: scgkey-store-password: scg1234key-store: classpath:scg-keystore.p12key-store-type: PKCS12您可以将…...

python Django中的cookies和session会话保持技术

cookies和session都是为了保持会话状态而诞生的两个存储技术会话定义&#xff1a; 从打开浏览器访问一个网站&#xff0c;到关闭浏览器结束此次访问&#xff0c;称之为一次会话HTTP协议是无状态的&#xff0c;导致会话状态难以保持Cookies-定义 cookies是保存在客户端浏览器上的…...

vue3的v-model指令

1. 普通input输入框双向绑定 <template><!-- 1. 普通input输入框双向绑定 --><!-- 其实等价于&#xff1a;<input :modelValue"title" update:modelValue"newTitle>titlenewTitle"/> --><input type"text" v-mod…...

Matlab小波去噪——基于wden函数的去噪分析

文章目录一、问题描述二、代码问题1&#xff1a;原始信号加6分贝高斯白噪声问题2&#xff1a;确定合适的小波基函数问题3&#xff1a;确定最合适的阈值计算估计方法问题4&#xff1a;确定合适的分解层数问题5&#xff1a;实际信号去噪问题6&#xff1a;对比三、演示视频最后一、…...

分布式对象存储——Apache Hadoop Ozone

前言 本文隶属于专栏《大数据技术体系》&#xff0c;该专栏为笔者原创&#xff0c;引用请注明来源&#xff0c;不足和错误之处请在评论区帮忙指出&#xff0c;谢谢&#xff01; 本专栏目录结构和参考文献请见大数据技术体系 1. 概述 Ozone是Apache Hadoop项目的子项目&#xf…...

Linux 和数据库笔记-03

今天主要内容数据库相关介绍数据库(软件)常见类型Navicat 工具基本使用常见的数据类型和约束(重点)SQL 语句的编写(表和数据)一. 数据库是什么?为什么学习数据库软件中产生的所有数据, 最终都要存储于数据库当中测试人员如果想要进行数据查询/数据校验, 就必须掌握对数据库的基…...

布尔定律---布尔代数的基本定律

一、单变量布尔定律 1、0-1定律 2、互补定律 3、重叠定律 4、还原定律 小结&#xff1a;或运算和与运算定律的差别在于&#xff1a;所有的“|”运算符换成“&”&#xff0c;运算结果为 0 换成 1。这就是对偶定律。它不仅是单逻辑变量的定律&#xff0c;而且对于所有布尔定…...

OSG三维渲染引擎编程学习之七十五:“第七章:OSG场景图形交互” 之 “7.6 多视图”

目录 第七章 OSG场景图形交互 7.6 多视图 7.6.1 多视图描述 7.6.2 多视图相机示例 第七章 OSG场景图形交互 作为一个成熟的三维渲染引擎,需...

【计算机】单位制前缀的歧义-KB、kb、MB混用

引言 经常遇到容量、带宽的单位&#xff0c;MB&#xff0c;GB在进行单位换算时&#xff0c;总是傻傻分不清&#xff0c;查些资料浅记录一下。 公制&#xff08;metric system&#xff09; 又译米制&#xff0c;是一个国际化十进位量度系统。法国在1799年开始使用公制&#xf…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...