当前位置: 首页 > news >正文

837. 连通块中点的数量(acwing)

文章目录

  • 837. 连通块中点的数量
    • 题目描述
    • 维护size的并查集

837. 连通块中点的数量

题目描述

给定一个包含 n 个点(编号为 1~n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;

输入格式
第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No。

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

数据范围

1≤n,m≤105

输入样例:

5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例:

Yes
2
3

维护size的并查集

#include<bits/stdc++.h> // 包含大多数标准库
using namespace std;const int z=1e5+10; // 定义常数z为最大点数加10,用于数组大小int fa[z], size[z]; // fa数组存储每个点的父节点,size数组存储每个连通块的大小// 并查集的查找函数,用于查找元素i的根节点,并执行路径压缩
int find(int i) {if(fa[i] != i) fa[i] = find(fa[i]); // 路径压缩,递归地将fa[i]更新为根节点return fa[i]; // 返回根节点
}// 主函数
int main() {int n, m; // n表示点的数量,m表示操作的数量cin >> n >> m; // 输入点的数量和操作的数量// 初始化并查集for (int i = 1; i <= n; i++) {fa[i] = i; // 每个点的父节点初始化为自己size[i] = 1; // 每个点所在连通块的大小初始化为1}// 循环处理m个操作while (m--) {string s; // 存储操作类型cin >> s; // 输入操作类型// 根据不同的操作类型进行操作if(s == "C") { // 连接操作int a, b;cin >> a >> b; // 输入要连接的两个点的编号if(find(a) == find(b)) continue; // 如果已经在同一个连通块中,无需操作// 否则,合并两个连通块size[find(b)] += size[find(a)]; // 更新根节点的连通块大小fa[find(a)] = find(b); // 将一个点的根节点连接到另一个点的根节点} else if(s == "Q1") { // 查询操作1,询问两个点是否连通int a, b;cin >> a >> b; // 输入要查询的两个点的编号if(find(a) == find(b)) cout << "Yes" << endl; // 如果根节点相同,输出Yeselse cout << "No" << endl; // 否则,输出No} else { // 查询操作2,询问连通块的大小int a;cin >> a; // 输入要查询的点的编号cout << size[find(a)] << endl; // 输出该点所在连通块的大小}}return 0;
}

在这段代码中,主要用到了两个全局数组fasizefa数组用来表示每个节点的父节点,初始化时每个节点都是自己的父节点。size数组用来表示以当前节点为根节点的连通块的大小,初始化为1。每次合并连通块时,会更新这两个数组的信息。

find函数是并查集的核心,用于查找节点的根节点,并在这个过程中进行路径压缩。

main函数中,代码首先接收输入的节点数和操作数,然后通过循环处理每一条操作指令。指令分为三种类型,分别对应代码中的三个分支。

  • C操作将两个节点连接在一起,如果它们不在同一个连通块中,会合并它们所在的连通块,并更新连通块大小。
  • Q1操作判断两个节点是否在同一个连通块中,输出结果。
  • Q2操作输出给定节点所在连通块的大小。

这个程序对应了题目描述中的需求,它可以有效地处理大量的连通性查询和连通块大小查询。

相关文章:

837. 连通块中点的数量(acwing)

文章目录 837. 连通块中点的数量题目描述维护size的并查集 837. 连通块中点的数量 题目描述 给定一个包含 n 个点&#xff08;编号为 1&#xff5e;n&#xff09;的无向图&#xff0c;初始时图中没有边。 现在要进行 m 个操作&#xff0c;操作共有三种&#xff1a; C a b&a…...

【wine】WINEDEBUG 分析mame模拟器不能加载roms下面的游戏 可以调整参数,快速启动其中一个游戏kof98

故障现象&#xff0c;MAME启动后&#xff0c;游戏都没有识别 添加日志输出&#xff0c;重新启动wine #!/bin/bashexport WINEPREFIX$(pwd)/.wine export WINESERVER$(pwd)/bin/wineserver export WINELOADER$(pwd)/bin/wine export WINEDEBUG"file,mame,warn,err"…...

pytorch安装记录

pytorch安装记录 1 安装anconda2 安装pycharm3 安装显卡驱动4 根据显卡驱动版本下载CUDA5 cudnn安装6 根据CUDA版本安装pytorch7 pytorch卸载 1 安装anconda 下载地址: https://www.anaconda.com/download#downloads 验证是否安装成功&#xff1a;打开cmd, 输入 conda 验证环…...

不依赖第三方平台,用Dart语言实现 ios 消息推送

仅仅给大家提供代码,还搞不定的欢迎咨询。 void _sendIosPushNotification(BleMessage message, String deviceToken, {bool debugMode = false}) async {final Map<String, dynamic> header = {"alg": "ES256", "kid": GloabelConfigu…...

TEASEL: A transformer-based speech-prefixed language model

文章目录 TEASEL&#xff1a;一种基于Transformer的语音前缀语言模型文章信息研究目的研究内容研究方法1.总体框图2.BERT-style Language Models&#xff08;基准模型&#xff09;3.Speech Module3.1Speech Temporal Encoder3.2Lightweight Attentive Aggregation (LAA) 4.训练…...

机器学习之分类回归模型(决策数、随机森林)

回归分析 回归分析属于监督学习方法的一种&#xff0c;主要用于预测连续型目标变量&#xff0c;可以预测、计算趋势以及确定变量之间的关系等。 Regession Evaluation Metrics 以下是一些最流行的回归评估指标: 平均绝对误差(MAE):目标变量的预测值与实际值之间的平均绝对差…...

算法二刷day3

203.移除链表元素 class Solution { public:ListNode* removeElements(ListNode* head, int val) {ListNode *dummyHead new ListNode(0);dummyHead->next head;ListNode *cur dummyHead;while (cur->next ! nullptr) {if (cur->next->val val) {ListNode *tm…...

面具安装LSP模块时提示 Unzip error错误的解决办法

面具(Magisk Delta)安装LSP模块时提示 Unzip error错误的解决办法 ​​ 如果前面的配置都正常的话&#xff0c;可能是LSP版本有问题重新去Github下载一个最新版的吧&#xff1b;我是这么解决的。 我安装1.91那个版本的LSP就是死活安装不上&#xff0c;下载了1.92的版本一次就…...

HarmonyOS 关系型数据 整体测试 进行 初始化 增删查改 操作

好啊 前面的文章 HarmonyOS 数据持久化 关系型数据库之 初始化操作 HarmonyOS 数据持久化 关系型数据库之 增删改逻辑编写 HarmonyOS 数据持久化 关系型数据库之 查询逻辑编写 我们分别编写了 初始化数据库表 增删查改操作 的逻辑代码 那么 下面我们就来整体操作一下 然后 这…...

软件杯 垃圾邮件(短信)分类算法实现 机器学习 深度学习

文章目录 0 前言2 垃圾短信/邮件 分类算法 原理2.1 常用的分类器 - 贝叶斯分类器 3 数据集介绍4 数据预处理5 特征提取6 训练分类器7 综合测试结果8 其他模型方法9 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 垃圾邮件(短信)分类算…...

cnpm install报错:报错Error: certificate has expired ,淘宝镜像证书过期了解决办法

方案1&#xff1a; 不校验证书 cnpm install --insecure; 方案2&#xff1a; 替换镜像源&#xff0c;比如换成华为的 cnpm confg set registry https://mirrors.huaweicloud.com/repository/npm/ 方案3&#xff1a; 使用http作为镜像源 cnpm confg set registry http://re…...

生成式 AI:使用 Pytorch 通过 GAN 生成合成数据

导 读 生成对抗网络&#xff08;GAN&#xff09;因其生成图像的能力而变得非常受欢迎&#xff0c;而语言模型&#xff08;例如 ChatGPT&#xff09;在各个领域的使用也越来越多。这些 GAN 模型可以说是人工智能/机器学习目前主流的原因&#xff1b; 因为它向每个人&#xff0…...

C#/WPF 清理任务栏托盘图标缓存

在我们开发Windows客户端程序时&#xff0c;往往会出现程序退出后&#xff0c;任务还保留之前程序的缓存图标。每打开关闭一次程序&#xff0c;图标会一直增加&#xff0c;导致托盘存放大量缓存图标。为了解决这个问题&#xff0c;我们可以通过下面的程序清理任务栏托盘图标缓存…...

java SSM科研管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM科研管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S…...

C# OpenCvSharp 图片批量改名

目录 效果 项目 代码 下载 C# OpenCvSharp 图片批量改名 效果 项目 代码 using NLog; using OpenCvSharp; using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Windows.Forms; namespace OpenCvSharp_Demo { publi…...

大数据开发-Hive介绍以及安装配置

文章目录 数据库和数据仓库的区别Hive安装配置Hive使用方式Hive日志配置 数据库和数据仓库的区别 数据库&#xff1a;传统的关系型数据库主要应用在基本的事务处理&#xff0c;比如交易&#xff0c;支持增删改查数据仓库&#xff1a;主要做一些复杂的分析操作&#xff0c;侧重…...

指针篇章-(4)+qsort函数的模拟

学习目录 ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————…...

接口测试实战--使用docker方案去部署jenkins并搭建接口自动化项目

一、搭建环境 1.几个概念 CI:持续集成 CD:持续交付 DevOps(development and operations):是一个框架,是一种方法论,并不是一套工具,包括一系列基本原则和实践,核心价值在于更快速的交付和响应市场变化。 jenkins:一个开源框架,需要操作什么流程,就下载什么插件 2…...

Day 8.TCP包头和HTTP

TCP包头 1.序号&#xff1a;发送端发送数据包的编号 2.确认号&#xff1a;已经确认接收到的数据的编号&#xff08;只有当ACK为1时、确认号才有用&#xff09;&#xff1b; TCP为什么安全可靠 1.在通信前建立三次握手 SYP SYPACK ACK 2.在通信过程中通过序列号和确认号和…...

【机器学习】支持向量机 | 支持向量机理论全梳理 对偶问题转换,核方法,软间隔与过拟合

支持向量机走的路和之前介绍的模型不同 之前介绍的模型更趋向于进行函数的拟合&#xff0c;而支持向量机属于直接分割得到我们最后要求的内容 1 支持向量机SVM基本原理 当我们要用一条线&#xff08;或平面、超平面&#xff09;将不同类别的点分开时&#xff0c;我们希望这条…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素&#xff0c;以下是主要的定位方式&#xff1a; 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...