当前位置: 首页 > news >正文

金融知识分享系列之:出场信号RSI指标

金融知识分享系列之:出场信号RSI指标

  • 一、出场信号RSI指标
  • 二、RSI指标原理
  • 三、 指标用法
  • 四、RSI指标总结

一、出场信号RSI指标

  • 名称:相对强弱指标
  • 参数:(默认14)
  • 组成:RSI线以及30轴、50轴、70轴构成

在这里插入图片描述

  • 0-30是极弱:0-30的范围也叫做超卖区
  • 30-50是弱
  • 50-70是强
  • 70-100是极强:70到100的范围也叫做超买区

二、RSI指标原理

在这里插入图片描述
在这里插入图片描述

三、 指标用法

  • 超买区的入场信号
  • RSI指标的背离

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、RSI指标总结

  • RSI指标更适合作为出场信号而非入场,RSI指标作为入场信号其实就是在逆势交易
  • RSI指标适合波段交易,如果是大段连续的上涨用RSI指标会提前出场,这是这个指标的特性。

相关文章:

金融知识分享系列之:出场信号RSI指标

金融知识分享系列之:出场信号RSI指标 一、出场信号RSI指标二、RSI指标原理三、 指标用法四、RSI指标总结 一、出场信号RSI指标 名称:相对强弱指标参数:(默认14)组成:RSI线以及30轴、50轴、70轴构成 0-30是极弱:0-30的…...

基于Spring Boot的宿舍管理系统

摘 要 随着信息时代的来临,过去的传统管理方式缺点逐渐暴露,对过去的传统管理方式的缺点进行分析,采取计算机方式构建宿舍管理系统。本文通过课题背景、课题目的及意义相关技术,提出了一种楼宇信息、宿舍信息、宿舍安排、缺勤信息…...

全量知识系统“全基因序列”程序构想及SmartChat的回复

感觉上,全量知识系统的程序起点基本确定。下一步就是程序了。程序的整个设计过程都准备同时使用两个AI工具。以下是和“百度AI”同步进行的Q&A。 Q1. 基本假设:“全基因序列”中“基因”的本质是联结collection。 做法是: 对给出的一个…...

315晚会曝光主板机产业链,如何应对工作室技术更迭

近日,央视315晚会开播,曝光了一批最新案例,聚焦消防、食品、金融、数据等多个领域。其中 “网络黑灰产”硬件设备「手机主板机」及其产业链暴露在大众视野。 手机主板机实物丨图源:央视财经 据报道,主板机的构造是将数…...

Copilot with GPT-4与文心一言4.0:AI技术的未来

Copilot with GPT-4的深度分析 Copilot with GPT-4是基于OpenAI的GPT-4模型,它是一个多功能的AI助手,能够在多种语言中进行交流和创作。GPT-4模型的强大之处在于其庞大的数据训练基础,这使得它在理解语境、生成文本以及执行复杂任务方面表现…...

注册-前端部分

前提:后端jar环境、Vue3环境、Redis环境 搭建页面(html标签、css样式) → 绑定数据与事件(表单校验) → 调用后台接口(接口文档、src/api/xx.js封装、页面函数中调用) Login.vue文件&#xff…...

SpringBoot ApplicationListener实现发布订阅模式

文章目录 前言一、Spring对JDK的扩展二、快速实现发布订阅模式 前言 发布订阅模式(Publish-Subscribe Pattern)通常又称观察者模式,它被广泛应用于事件驱动架构中。即一个事件的发布,该行为会通过同步或者异步的方式告知给订阅该事件的订阅者。JDK中提供…...

嵌入式学习40-数据结构

数据结构 1.定义 一组用来保存一种或者多种特定关系的 数据的集合(组织和存储数据) 程序的设计: …...

k8s集群部署elk

一、前言 本次部署elk所有的服务都部署在k8s集群中,服务包含filebeat、logstash、elasticsearch、kibana,其中elasticsearch使用集群的方式部署,所有服务都是用7.17.10版本 二、部署 部署elasticsearch集群 部署elasticsearch集群需要先优化…...

【Python】清理conda缓存的常用命令

最近发现磁盘空间不足,很大一部分都被anaconda占据了,下面是一些清除conda缓存的命令 清理所有环境的Anaconda包缓存 删除所有未使用的包以及缓存的索引和临时文件 conda clean --all清理某一特定环境的Anaconda包缓存 conda clean --all -n 环境名清…...

代码随想录算法训练营第46天 | 完全背包,139.单词拆分

动态规划章节理论基础: https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 完全背包理论基础: https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9…...

rust - 将windows剪贴板的截图保存为png

本文提供了将windows系统的截图另存为png格式图片的方法。 添加依赖 cargo add clipboard-win cargo add image cargo add windows配置修改windows依赖特性 [dependencies] image "0.25.0"[target.cfg(windows).dependencies] windows "0.51.1" clipb…...

pyflink1.18.0 报错 TypeError: cannot pickle ‘_thread.lock‘ object

完整报错 Traceback (most recent call last):File "/Users//1.py", line 851, in <module>ds1 = my_datastream.key_by(lambda x: x[0]).process(MyProcessFunction()) # 返回元组即: f0 f1 f2 三列File "/Users/thomas990p/bigdataSoft/minicondaarm/…...

算法学习系列(四十一):Flood Fill算法

目录 引言一、池塘计数二、城堡问题三、山峰和山谷 引言 关于这个 F l o o d F i l l Flood\ Fill Flood Fill 算法&#xff0c;其实我觉得就是一个 B F S BFS BFS 算法&#xff0c;模板其实都是非常相似的&#xff0c;只不过有些变形而已&#xff0c;然后又叫这个名字。关于…...

Re62:读论文 GPT-2 Language Models are Unsupervised Multitask Learners

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文全名&#xff1a;Language Models are Unsupervised Multitask Learners 论文下载地址&#xff1a;https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learner…...

stm32-编码器测速

一、编码器简介 编码电机 旋转编码器 A,B相分别接通道一和二的引脚&#xff0c;VCC&#xff0c;GND接单片机VCC&#xff0c;GND 二、正交编码器工作原理 以前的代码是通过触发外部中断&#xff0c;然后在中断函数里手动进行计次。使用编码器接口的好处就是节约软件资源。对于频…...

全国各省市县统计年鉴/中国环境统计年鉴/中国工业企业数据库/中国专利数据库/污染排放数据库

统计年鉴是指以统计图表和分析说明为主&#xff0c;通过高度密集的统计数据来全面、系统、连续地记录年度经济、社会等各方面发展情况的大型工具书来获取统计数据资料。 统计年鉴是进行各项经济、社会研究的必要前提。而借助于统计年鉴&#xff0c;则是研究者常用的途径。目前国…...

【LAMMPS学习】二、LAMMPS安装(2)MacOS和Win安装

2. LAMMPS安装 您可以将LAMMPS下载为可执行文件或源代码。 在下载LAMMPS源代码时&#xff0c;还必须构建LAMMPS。但是对于在构建中包含或排除哪些特性&#xff0c;您有更大的灵活性。当您下载并安装预编译的LAMMPS可执行文件时&#xff0c;您只能安装可用的LAMMPS版本以及这些…...

如何解决网络中IP地址发生冲突故障?

0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记&#xff0c;未经本人许可&#xff0c;请勿转载&#xff0c;如发现本笔记内容的错误还望各位不吝赐教&#xff08;笔记内容可能有误怕产生错误引导&#xff09;。 1、个人IP地址冲突解决方案 首先winR&#xff0c;调出…...

机器学习常用框架

机器学习是人工智能的一个重要分支&#xff0c;它通过让计算机系统利用数据自我学习来改进任务执行的能力。在机器学习领域&#xff0c;有许多成熟的框架被广泛使用&#xff0c;这些框架提供了构建和训练机器学习模型的工具。以下是一些常用的机器学习框架&#xff1a; Tensor…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...