当前位置: 首页 > news >正文

C++ list链表模拟实现

目录

前言:

模拟实现:

迭代器的实现:

list类功能函数实现:

 初始化成空函数(empty_init):

构造函数:

 拷贝构造函数:

尾插(push_back):

插入(insert):

删除(erase):

 尾删(pop_back):

头插(push_front):

头删(pop_front):

 清理(clear):

 交换(swap):

赋值重载:

析构:

代码


前言:

  在学习完list的基本功能后,我自己模拟实现了一个list,具备一些常用的基本功能,这篇博客用来分享并记录,方便后续复习。

模拟实现:

因为list中可以存很多种类型,比如int,char,float,等,还可能是自定义类型,所以我打算使用类模板,先把简单的节点弄成类模板:

接下来就是list的类模板:

迭代器的实现:

  这里迭代器的模拟实现不能像vector一样简单的使用原生指针,因为链表的地址不是连续的,我们在进行原生指针的++或者--操作时,是无法实现访问下一个或者上一个元素的,那该怎样实现简单的对迭代器++或者--就能实现访问下一个或者上一个元素呢?

  这里有一个巧妙地方法就是借助类,没错,我们将原生指针放入一个名为Listiterator的类里面,然后在这个类中,使用运算符重载,重载++,--,*,->等运算符,就能像库里面一样使用迭代器了。

 上图的Ref和Ptr模板分别是传引用和传指针,用于应对const 迭代器的使用 ,保证const迭代器可以修改迭代器,但不能修改该迭代器指向的内容。接下来开始在这个类中重载各种运算符:

这几个运算符重载都很简单,应该都能看懂,接下来进入list类模板中,就行list的功能函数实现:

list类功能函数实现:

先来几个简单但又很重要的函数实现:

 初始化成空函数(empty_init):

构造函数:

有了上面这个函数后,构造函数就简单了,直接复用即可:

 拷贝构造函数:

尾插(push_back):

插入(insert):

删除(erase):

 尾删(pop_back):

头插(push_front):

头删(pop_front):

 清理(clear):

 交换(swap):

赋值重载:

 此处传值传参的妙处:

list1=iist2,进入函数此时lt是list2的拷贝,因为swap是成员函数,所以有一个隐含的this指针,此时只需传参lt就可以完成lt和list1交换,间接完成对list1的赋值,同时没有改变list2,只是改变了lt,而lt出作用域后就会消失。

析构:

代码:

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
namespace sxk
{   template<class T>struct ListNode{ListNode<T>* next;//下一个节点的地址ListNode<T>* prev;//上一个节点的地址T val;//数据ListNode(const T& x = T())//节点的构造函数:next(nullptr), prev(nullptr), val(x){}};template<class T,class Ref,class Ptr>struct Listiterator{typedef ListNode<T> Node;typedef Listiterator<T, Ref, Ptr> Self;typedef Listiterator<T, T&, T*> iterator;typedef Listiterator<T, const T&, const T*> const_iterator;Node* _node;Listiterator(Node* node)//迭代器的构造函数:_node(node){}Ref operator*(){return _node->val;}Ptr operator->(){return &_node->val;}Self& operator++(){_node = _node->next;return *this;}Self operator++(int){Self tmp(*this);_node = _node->next;return tmp;}Self& operator--(){_node = _node->prev;return *this;}Self operator--(int){Self tmp(*this);_node = _node->prev;return tmp;}bool operator==(const Self& it){return _node == it._node;}bool operator!=(const Self& it){return _node != it._node;}};template<class T>class list{public:typedef ListNode<T> Node;typedef Listiterator<T, T&, T*> iterator;typedef Listiterator<T, const T&, const T*> const_iterator;iterator begin(){return _head->next;}iterator end(){return _head;}const_iterator begin()const{return _head->next;}const_iterator end()const{return _head;}size_t size(){return _size;}bool empty(){return _size == 0;}void empty_init(){_head = new Node;//new出头节点_head->next = _head;//头节点下一个指向自己_head->prev = _head;//头节点上一个指向自己_size = 0;}list()//构造函数{empty_init();}list(const list<T>& lt)//拷贝构造函数{empty_init();//先初始化成只有一个头节点for (auto& x : lt){push_back(x);//直接尾插即可}}list<T>& operator=(const list<T> lt)//lt是赋值类的拷贝{swap(lt);//交换lt和this,可以完成赋值并不影响赋值类return *this;}void swap(const list<T>& lt){std::swap(_head, lt._head);//直接调用库里的swap交换两个成员变量即可std::swap(_size, lt._size);}void clear(){iterator it = begin();while (it != end())//遍历删除{it = erase(it);//更新it,防止erase后迭代器失效it++;}}~list(){clear();//先清理,只保留一个头节点delete _head;//释放头节点_head = nullptr;}void push_back(const T& x){Node* newnode = new Node;//new出新节点newnode->val = x;//给新节点赋值Node* tail = _head->prev;//记录尾节点tail->next = newnode;//尾节点的下一个指向新节点newnode->next = _head;//新节点的next指向头节点newnode->prev = tail;//新节点的prev指向之前旧的尾节点_head->prev = newnode;//头节点的prev指向新节点_size++;}void push_front(){insert(begin());}void pop_back(){erase(--end());//直接复用erase,注意end指向的是头节点,所以要--}void pop_front(){erase(begin());}void insert(iterator pos, const T& x)//在pos位置前插入x{Node* newnode = new Node;//new出新节点newnode->val = x;//给新节点赋值Node* cur = pos._node;//记录当前pos位置Node* prev = cur->prev;//记录pos前一个prev->next = newnode;//pos前一个节点的next指向新节点newnode->next = cur;//新节点的next指向pos节点newnode->prev = prev;//新节点的prev指向pos前一个节点cur->prev = newnode;//pos的prev指向新节点_size++;}iterator erase(iterator pos)//删除pos位置的值{Node* cur = pos._node;//记录pos位置的节点Node* prev = cur->prev;//记录pos的前一个节点Node* next = cur->next;//记录pos的下一个节点prev->next = cur->next;//pos的前一个节点的next指向pos的下一个节点next->prev = prev;//pos的下一个节点的prev指向pos的前一个节点delete cur;//释放pos位置的节点cur = nullptr;//置为空_size--;return iterator(next);//防止erase后迭代器失效,更新迭代器}private:Node* _head;size_t _size;};void Print_List(const list<int>& lt){list<int>::const_iterator it = lt.begin();while (it != lt.end()){cout << (*it) << " ";it++;}cout << endl;}
}

相关文章:

C++ list链表模拟实现

目录 前言&#xff1a; 模拟实现&#xff1a; 迭代器的实现&#xff1a; list类功能函数实现&#xff1a; 初始化成空函数&#xff08;empty_init&#xff09;&#xff1a; 构造函数&#xff1a; 拷贝构造函数&#xff1a; 尾插&#xff08;push_back&#xff09;: 插入…...

LangChain - PromptTemplate

文章目录 关于 Prompt关于 PromptTemplate基本创建无变量输入1个变量多变量使用 from_template 自动推断 input_variables 聊天模板使用 from_template 方法构建使用 PromptTemplate 构建 MessagePromptTemplate使用一或多个 MessagePromptTemplates 构建一个 ChatPromptTempla…...

spring cloud gateway openfeign 联合使用产生死锁问题

spring cloud gateway openfeign 联合使用产生死锁问题&#xff0c;应用启动的时候阻塞卡住。 spring.cloud 版本如下 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-dependencies</artifactId><vers…...

【WPF应用37】WPF基本控件-DatePicker的详解与示例

WPF&#xff08;Windows Presentation Foundation&#xff09;是微软推出的一个用于构建桌面应用程序的图形子系统。在WPF中&#xff0c;DatePicker控件是一个常用的控件&#xff0c;用于用户选择日期。DatePicker控件提供了一个简洁直观的界面&#xff0c;使用户能够轻松选择日…...

GitHub教程:最新如何从GitHub上下载文件(下载单个文件或者下载整个项目文件)之详细步骤讲解(图文教程)

&#x1f42f; GitHub教程&#xff1a;最新如何从GitHub上下载文件(下载单个文件或者下载整个项目文件)之详细步骤讲解(图文教程) &#x1f4c1; 文章目录 &#x1f42f; GitHub教程&#xff1a;最新如何从GitHub上下载文件(下载单个文件或者下载整个项目文件)之详细步骤讲解(图…...

编译Nginx配置QUIC/HTTP3.0

1. 安装BoringSSL sudo apt update sudo apt install -y build-essential ca-certificates zlib1g-dev libpcre3 \ libpcre3-dev tar unzip libssl-dev wget curl git cmake ninja-build mercurial \ libunwind-dev pkg-configgit clone --depth1 https://github.com/google/b…...

【JavaWeb】Day38.MySQL概述——数据库设计-DQL

数据库设计——DQL 介绍 DQL英文全称是Data Query Language(数据查询语言)&#xff0c;用来查询数据库表中的记录。 查询关键字&#xff1a;SELECT 查询操作是所有SQL语句当中最为常见&#xff0c;也是最为重要的操作。在一个正常的业务系统中&#xff0c;查询操作的使用频次…...

如何使用Java和RabbitMQ实现延迟队列(方式二)?

前言 昨天写了一篇关于Java和RabbitMQ使用插件实现延迟队列功能的文章&#xff0c;今天来讲下另外一种方式&#xff0c;不需要RabbitMQ的插件。 前期准备&#xff0c;需要安装好docker、docker-compose的运行环境。 需要安装RabbitMQ的可以看下面这篇文章。 如何使用PHP和R…...

String.valueOf() 将各种数据类型的值转换为它们的字符串

String.valueOf() 是 Java 中 String 类的一个静态方法&#xff0c;用于将各种数据类型的值转换为它们的字符串表示形式。这个方法在多种情况下都非常有用&#xff0c;特别是当你需要将非字符串类型的值转换为字符串时。 方法签名 String.valueOf() 方法有多个重载版本&#…...

2024-04-08 NO.6 Quest3 自定义交互事件

文章目录 1 交互事件——更改 Cube 颜色2 交互事件——创建 Cube2.1 非代码方式2.2 代码方式 ​ 在开始操作前&#xff0c;我们导入上次操作的场景&#xff0c;相关介绍在 《2024-04-08 NO.5 Quest3 手势追踪进行 UI 交互-CSDN博客》 文章中。 1 交互事件——更改 Cube 颜色 …...

素描进阶:深入探索如何表现石膏像的质感

​素描进阶&#xff1a;深入探索如何表现石膏像的质感 素描&#xff0c;作为一种古老而经典的绘画方式&#xff0c;历来都被视为是艺术家们探索世界、理解形式与质感的重要工具。而在素描的过程中&#xff0c;如何精准地捕捉并表现物体的质感&#xff0c;是每位艺术家都需要深…...

flutter组件_AlertDialog

官方说明&#xff1a;A Material Design alert dialog. 翻译&#xff1a;一个材料设计警告对话框。 作者释义&#xff1a;显示弹窗&#xff0c;类似于element ui中的Dialog组件。 AlertDialog的定义 const AlertDialog({super.key,this.icon,this.iconPadding,this.iconColor,t…...

供应链领域主题:生产制造关键术语和系统

BOM&#xff08;Bill of Material&#xff09;物料清单 BOM&#xff08;Bill of Material&#xff09;物料清单&#xff0c;是计算机可以识别的产品结构数据文件&#xff0c;也是ERP的主导文件。BOM使系统识别产品结构&#xff0c;也是联系与沟通企业各项业务的纽带。ERP系统中…...

k8s_入门_kubelet安装

安装 在大致了解了一些k8s的基本概念之后&#xff0c;我们实际部署一个k8s集群&#xff0c;做进一步的了解 1. 裸机安装 采用三台机器&#xff0c;一台机器为Master&#xff08;控制面板组件&#xff09;两台机器为Node&#xff08;工作节点&#xff09; 机器的准备有两种方式…...

主干网络篇 | YOLOv5/v7 更换骨干网络之 HGNetv2 | 百度新一代超强主干网络

本改进已融入到 YOLOv5-Magic 框架。 论文地址:https://arxiv.org/abs/2304.08069 代码地址:https://github.com/PaddlePaddle/PaddleDetection 中文翻译:https://blog.csdn.net/weixin_43694096/article/details/131353118 文章目录 HGNetv2网络结构1.1 主干网络1.2 颈部…...

JUC:ScheduledThreadPoolExecutor 延迟任务线程池的使用

文章目录 ScheduledThreadPoolExecutortimer&#xff08;不建议用&#xff09;ScheduledThreadPoolExecutor处理异常应用 ScheduledThreadPoolExecutor timer&#xff08;不建议用&#xff09; timer也可以进行延迟运行&#xff0c;但是会有很多问题。 比如task1运行时间超过…...

js str字符串和arr数组互相转换

js str字符串和arr数组互相转换 字符串转为数组 1、split()方法 返回的是原字符串的数组 var str "hello"; var arr str.split(""); console.log(arr); //输出["h", "e", "l", "l", "o"]2、Ar…...

计算机网络——40各个层次的安全性

各个层次的安全性 安全电子邮件 Alice需要发送机密的报文m给Bob Alice 产生随机的对称秘钥&#xff0c; K s K_s Ks​使用 K s K_s Ks​对报文进行加密&#xff08;为了效率&#xff09;对 K s K_s Ks​使用Bob的公钥进行加密发送 K s ( m ) K_s(m) Ks​(m)和 K B ( K S ) K…...

OpenHarmony实战:Combo解决方案之W800芯片移植案例

本方案基于OpenHarmony LiteOS-M内核&#xff0c;使用联盛德W800芯片的润和软件海王星系列Neptune100开发板&#xff0c;进行开发移植。 移植架构采用Board与SoC分离方案&#xff0c;支持通过Kconfig图形化配置编译选项&#xff0c;增加玄铁ck804ef架构移植&#xff0c;实现了…...

【数据结构】数组(稀疏矩阵、特殊矩阵压缩、矩阵存储、稀疏矩阵的快速转置、十字链表)

稀疏矩阵、矩阵压缩、稀疏矩阵的快速转置、十字链表 目录 稀疏矩阵、矩阵压缩、稀疏矩阵的快速转置、十字链表1.数组2.数组的顺序表示和实现3.特殊矩阵的压缩存储&#xff08;1&#xff09;. 上三角矩阵—列为主序压缩存储&#xff08;2&#xff09;. 下三角矩阵—**行为主序压…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...