当前位置: 首页 > news >正文

C++ | Leetcode C++题解之第73题矩阵置零

题目:

题解:

class Solution {
public:void setZeroes(vector<vector<int>>& matrix) {int m = matrix.size();int n = matrix[0].size();int flag_col0 = false;for (int i = 0; i < m; i++) {if (!matrix[i][0]) {flag_col0 = true;}for (int j = 1; j < n; j++) {if (!matrix[i][j]) {matrix[i][0] = matrix[0][j] = 0;}}}for (int i = m - 1; i >= 0; i--) {for (int j = 1; j < n; j++) {if (!matrix[i][0] || !matrix[0][j]) {matrix[i][j] = 0;}}if (flag_col0) {matrix[i][0] = 0;}}}
};

相关文章:

C++ | Leetcode C++题解之第73题矩阵置零

题目&#xff1a; 题解&#xff1a; class Solution { public:void setZeroes(vector<vector<int>>& matrix) {int m matrix.size();int n matrix[0].size();int flag_col0 false;for (int i 0; i < m; i) {if (!matrix[i][0]) {flag_col0 true;}for …...

用 Supabase CLI 进行本地开发环境搭建

文章目录 &#xff08;零&#xff09;前言&#xff08;一&#xff09;Supabase CLI&#xff08;1.1&#xff09;安装 Scoop&#xff08;1.2&#xff09;用 Scoop 安装 Supabase CLI &#xff08;二&#xff09;本地项目环境&#xff08;2.1&#xff09;初始化项目&#xff08;2…...

三极管 导通条件

一、三极管理解 三极管是电子行业常用的元器件之一&#xff0c;他是一种电流型控制的器件&#xff0c;他有三种工作状态&#xff1a;截止区&#xff0c;放大区、饱和区。当三极管当做开关使用时&#xff0c;他工作在饱和区。下面简短讲解三极管作为开关使用的方法&#xff0c;只…...

一次pytorch分布式训练精度调试过程

现象: loss不下降 过程如下: 1.减少层数&#xff0c;准备最小复现环境 2.dropout设置为0&#xff0c;重复运行二次&#xff0c;对比loss是否一致 3.第二次迭代开始loss不一致 4.对比backward之后的梯度,发现某一个梯度不一致 5.dump得到所有算子的规模&#xff0c;单算子测试…...

STM32(GPIO)

GPIO简介 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口 引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V 输出模式下可控制端口输出高低电平&#xff0c;用以驱动LED、控制蜂鸣器、模拟通信协议输出时序等 输入模式下可读取端口的高低电…...

python设计模式---观察者模式

观察者模式是一种行为设计模式&#xff0c;用于定义对象之间的一对多依赖关系&#xff0c;当一个对象的状态发生变化时&#xff0c;所有依赖它的对象都会得到通知并自动更新。 from abc import ABC, abstractmethod from typing import Listclass Observable:def __init__(sel…...

【论文笔记】KAN: Kolmogorov-Arnold Networks 全新神经网络架构KAN,MLP的潜在替代者

KAN: Kolmogorov-Arnold Networks code&#xff1a;https://github.com/KindXiaoming/pykan Background ​ 多层感知机&#xff08;MLP&#xff09;是机器学习中拟合非线性函数的默认模型&#xff0c;在众多深度学习模型中被广泛的应用。但MLP存在很多明显的缺点&#xff1a;…...

【投稿资讯】区块链会议CCF C -- CoopIS 2024 截止7.10 附录用率

会议名称&#xff1a;CoopIS CCF等级&#xff1a;CCF C类学术会议 类别&#xff1a;人机交互与普适计算 录用率&#xff1a;2023年接收率21% (21 regular 10 work-in-progress papers/100) AREA 5: HUMAN-CENTRIC SECURITY AND PRIVACY IN INFORMATION SYSTEMS Access Con…...

React Native 之 开发环境搭建(一)

1. 安装Node.js&#xff1a; Node.js是React Native开发的基础&#xff0c;因此首先需要安装Node.js。强烈建议始终选择 Node 当前的 LTS &#xff08;长期维护&#xff09;版本&#xff0c;一般是偶数版本&#xff0c;不要选择偏实验性质的奇数版本。 如果你希望更方便地管理…...

DS高阶:B树系列

一、常见的搜索结构 1、顺序查找 时间复杂度&#xff1a;O(N) 2、二分查找 时间复杂度&#xff1a;O(logN) 要求&#xff1a;&#xff08;1&#xff09;有序 &#xff08;2&#xff09;支持下标的随机访问 3、二叉搜索树&#xff08;BS树&#xff09; 时间复杂…...

第五百零三回

文章目录 1. 概念介绍2. 使用方法2.1 普通路由2.2 命名路由 3. 示例代码4. 内容总结 我们在上一章回中介绍了"使用get显示Dialog"相关的内容&#xff0c;本章回中将介绍使用get进行路由管理.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章…...

[动态规划] 完美覆盖

描述 一张普通的国际象棋棋盘&#xff0c;它被分成 8 乘 8 (8 行 8 列) 的 64 个方格。设有形状一样的多米诺牌&#xff0c;每张牌恰好覆盖棋盘上相邻的两个方格&#xff0c;即一张多米诺牌是一张 1 行 2 列或者 2 行 1 列的牌。那么&#xff0c;是否能够把 32 张多米诺牌摆放…...

redis深入理解之实战

1、SpringBoot整合redis 1.1 导入相关依赖 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId> </dependency> <dependency><groupId>org.springframework.boot</groupId><artifactId&g…...

python设计模式---工厂模式

定义了一个抽象类Animal&#xff0c;并且让具体的动物类&#xff08;Dog、Cat、Duck&#xff09;继承自它&#xff0c;并实现了speak方法。然后创建了AnimalFactory工厂类&#xff0c;根据传入的参数来决定创建哪种动物的实例。 from abc import abstractmethod, ABCclass Anim…...

探索Vue 3.0中的v-html指令

探索Vue 3.0中的v-html指令 一、什么是v-html指令&#xff1f;1、 在Vue 3.0中使用v-html2、 注意事项 二、结语 一、什么是v-html指令&#xff1f; Vue.js作为一款流行的JavaScript框架&#xff0c;不断地演进着。随着Vue 3.0的发布&#xff0c;开发者们迎来了更加强大和灵活…...

anaconda 环境配置

官方网站下载地址&#xff1a; https://www.anaconda.com/download/ 国内清华镜像下载地址&#xff1a; https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 配置国内环境: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ …...

DS:顺序表、单链表的相关OJ题训练(2)

欢迎各位来到 Harper.Lee 的学习世界&#xff01; 博主主页传送门&#xff1a;Harper.Lee的博客主页 想要一起进步的uu欢迎来后台找我哦&#xff01; 一、力扣--141. 环形链表 题目描述&#xff1a;给你一个链表的头节点 head &#xff0c;判断链表中是否有环。如果链表中有某个…...

上传到 PyPI

将软件包上传到 PyPI&#xff08;Python Package Index&#xff09;&#xff0c;您需要遵循以下步骤&#xff1a; 准备软件包&#xff1a;确保您的软件包满足以下要求&#xff1a; 包含一个 setup.py 文件&#xff0c;用于描述软件包的元数据和依赖项。包含软件包的源代码和必要…...

盛最多水的容器(双指针)

解题思路&#xff1a; 1&#xff0c;暴力解法&#xff08;超时&#xff09; 我们可以使用两层for循环进行遍历。找到那个最大的面积即可&#xff0c;这里我就不写代码了&#xff0c;因为写了也是超时。 2&#xff0c;双指针法 先定义两个指针一个在最左端&#xff0c;一个在…...

【深度学习】实验3 特征处理

特征处理 python 版本 3.7 scikit-learn 版本 1.0.2 1.标准化 from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from matplotlib import gridspec import numpy as np import matplotlib.pyplot as plt cps np.random.…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...