从Android刷机包提取System和Framework
因为VIVO的手机很难解锁BL和Root,故直接从ADB中获取完整的Framework代码是比较困难的。我就考虑直接从VIVO提供的刷机包文件中获取相关的代码
由于vivo把system.new.dat分割了,所以下一步,我们使用cat命令,合并这些文件,以进行下一步的操作:
for i in $(seq 1 15); do cat system.new.dat.$i >> system.new.dat; done
当我们拿到合并后的system.new.dat后就需要将system.new.dat文件转换成system.img,我们主要使用如下的脚本:
git clone https://github.com/xpirt/sdat2img.git
拿到脚本后执行如下的指令就可以拿到恢复的system.img了
python3 sdat2img.py system.transfer.list system.new.dat system.img
解压或者用虚拟光驱加载system.img就可以拿到完整的FrameWork代码了
参考资料
- 手机端提取Android 8.x及以上版本卡刷包中的system文件
- Android 拆包,提取 APK 或 Framework 文件
- Android后台启动的实践之路二
相关文章:
从Android刷机包提取System和Framework
因为VIVO的手机很难解锁BL和Root,故直接从ADB中获取完整的Framework代码是比较困难的。我就考虑直接从VIVO提供的刷机包文件中获取相关的代码 由于vivo把system.new.dat分割了,所以下一步,我们使用cat命令,合并这些文件࿰…...
分布式光纤测温DTS与红外热成像系统的主要区别是什么?
分布式光纤测温DTS和红外热成像系统在应用领域和工作原理上存在显著的区别,两者具有明显的差异性。红外热成像系统适用于表现扩散式发热、面式场景以及环境条件较好的情况下。它主要用于检测物体表面的温度,并且受到镜头遮挡或灰尘等因素的影响会导致失效…...
python数据分析-问卷数据分析(地理课)
学生问卷 分析学生背景:班级分布、每周地理课数量、地理成绩分布 根据问卷,可以知道: 班级分布: 七年级有118名学生。 八年级有107名学生。 每周地理课的数量: 有28名学生每周有1节地理课。 有99名学生每周有2…...
【ARM64 常见汇编指令学习 19.3 -- ARMv8 三目运算指令 csel 详细介绍】
请阅读【嵌入式开发学习必备专栏】 文章目录 三目运算指令 csel地址获取条件选择用途 三目运算指令 csel 本篇文章以下面汇编代码介绍三目运算指令csel: adr x0, pass_messageadr x1, fail_messagecsel x1, x0, x1, pl下面是对这几行代码的详解&#x…...
Docker 安装部署(CentOS 8)
以下所有操作都是基于 CentOS 8 系统进行操作的。安装的 Docker 版本为 25.0.5-1.el8。 1、卸载老版本 Docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine注&a…...
Python自动化
python操作excel # 安装第三个库 cmd -> pip install xlrb 出现success即安装成功 # 导入库函数 import xlrb # 打开的文件保存为excel文档对象 xlsx xlrb.open_workbook("文件位置") # C:\Users\Adminstator\Desktop\学生版.xlsx # 操作工作簿里的工作表 # 1.…...
自然语言处理领域的重大挑战:解码器 Transformer 的局限性
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
【机器学习】机器学习赋能医疗健康:从诊断到治疗的智能化革命
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀目录 📒1. 引言📙2. 机器学习在疾病诊断中的应用🧩医学影像分析:从X光到3D成像带代码…...
Elasticsearch6.7版本,内网中其他电脑无法连接
对于Elasticsearch 6.7版本,如果内网中其他电脑无法连接,配置文件可能是问题的一个关键部分。以下是一些可能的配置问题和相应的解决步骤,你可以按照这些步骤进行排查: 网络配置: 检查elasticsearch.yml配置文件中的ne…...
交友系统定制版源码 相亲交友小程序源码全开源可二开 打造独特的社交交友系统
交友系统源码的实现涉及到多个方面,包括前端页面设计、后端逻辑处理、数据库设计以及用户交互等。以下是一个简单的交友系统源码实现的基本框架和关键步骤: 1.数据库设计:用户表:存储用户基本信息,如用户ID、用户名、密码、头像、性别、年龄、地理位置…...
数据结构笔记39-48
碎碎念:想了很久,不知道数据结构这个科目最终该以什么笔记方式呈现出来,是纸质版还是电子版?后来想了又想,还是电子版吧?毕竟和计算机有关~(啊哈哈哈哈哈哈哈) 概率论已经更新完了&…...
2-3 基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合
基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合。NSSCTest.m文件:用于查看利用NSSC算法分解出的图像并保存。其中的nlevel可调test.m文件:用于产生融合结果,其中一个参数需要设置:Low_Coeffs…...
机器学习笔记 - LoRA:大型语言模型的低秩适应
一、简述 1、模型微调 随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT) 。下图详细概述了此方法的工作原理。 完全微调FFT 的计算成本和资源需求很大,因为更新每…...
基于python实现视频和音频长度对齐合成并添加字幕
在许多视频编辑任务中,我们常常需要将视频和音频进行对齐,并添加字幕。本文将详细介绍如何使用Python实现这一功能,并在视频中添加中文字幕。我们将使用OpenCV处理视频帧,使用MoviePy处理音频和视频的合成,使用PIL库绘…...
爬虫-模拟登陆博客
import requests from bs4 import BeautifulSoupheaders {user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36 } # 登录参数 login_data {log: codetime,pwd: shanbay520,wp-submit: …...
【深度学习】【NLP】Bert理论,代码
论文 : https://arxiv.org/abs/1810.04805 文章目录 一、Bert理论BERT 模型公式1. 输入表示 (Input Representation)2. 自注意力机制 (Self-Attention Mechanism)3. Transformer 层 (Transformer Layer) 二、便于理解Bert的代码1. 自注意力机制2. Transformer 层3. …...
element table 点击某一行中按钮加载
在Element UI中,实现表格(element-table)中的这种功能通常涉及到数据处理和状态管理。当你点击某一行的按钮时,其他行的按钮需要动态地切换为加载状态,这可以通过以下步骤实现: 1.表格组件:使用…...
Linux开机自启/etc/init.d和/etc/rc.d/rc.local
文章目录 /etc/init.d和/etc/rc.d/rc.local的区别/etc/init.dsystemd介绍 /etc/init.d和/etc/rc.d/rc.local的区别 目的不同: /etc/rc.d/rc.local:用于在系统启动后执行用户自定义命令,适合简单的启动任务。 /etc/init.d:用于管理…...
DP:两个数组的dp问题
解决两个数组的dp问题的常用状态表示: 1、选取第一个字符串[0-i]区间以及第二个字符串[0,j]区间作为研究对象 2、根据题目的要求确定状态表示 字符串dp的常见技巧 1、空串是有研究意义的,引入空串可以帮助我们思考虚拟的边界如何进行初始化。 2、如…...
嵌入式Linux:格式化I/O
目录 1、格式化输出函数 1.1、printf()函数 1.2、fprintf()函数 1.3、dprintf()函数 1.4、sprintf()函数 1.5、snprintf()函数 2、格式化输入函数 2.1、scanf()函数 2.2、fscanf()函数 2.3、sscanf()函数 在Linux中,格式化I/O(formatted I/O&a…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
