当前位置: 首页 > news >正文

MySql几十万条数据,同时新增或者修改

项目场景:

十万条甚至更多的数据新增或者修改


问题描述

现在有十万条数据甚至更多数据,在这些数据中,有部分数据存在数据库中,有部分数据确是新数据,存在的数据需要更新,不存在的数据需要新增


原因分析:

几十万的数据有新增,有修改,我们肯定不能去每条都要去数据库查询验证是否存在,这样数据库也扛不住


解决方案:

提示:有两种解决方案简单记录下,在mybatis中使用的场景

1、第一种解决方式,使用on duplicate key update,主键重复去修改,不重复就新增这里的order_id就是主键

<insert id="addOrUpdateKryOrderMst" parameterType="list">insert into ${schema}.me_kry_order_mst(`order_id`,`trade_no`,`trade_type`,`trade_status`,`order_time`,`check_out_time`,`source`,`source_name`,`received_amount`,`cust_real_pay`,`trade_amount`,`privilege_amount`)values<foreach collection="kryOrderMstParam" item="item" separator=",">(#{item.orderId}, #{item.tradeNo}, #{item.tradeType}, #{item.tradeStatus}, #{item.orderTime}, #{item.checkOutTime}, #{item.source}, #{item.sourceName}, #{item.receivedAmount}, #{item.custRealPay}, #{item.tradeAmount}, #{item.privilegeAmount})</foreach>on duplicate key updatetrade_no =values (trade_no), trade_type =values (trade_type), trade_status =values (trade_status), order_time =values (order_time), check_out_time =values (check_out_time), `source` =values (`source`), source_name =values (source_name), received_amount =values (received_amount), cust_real_pay =values (cust_real_pay), trade_amount =values (trade_amount), privilege_amount =values (trade_amount)</insert>

2、第二种解决方式,使用replace into,若是主键存在就删除重新新增一条

    <insert id="addOrUpdateKryOrderMst" parameterType="list">replace into ${schema}.me_kry_order_mst(`order_id`,`trade_no`,`trade_type`,`trade_status`,`order_time`,`check_out_time`,`source`,`source_name`,`received_amount`,`cust_real_pay`,`trade_amount`,`privilege_amount`)values<foreach collection="kryOrderMstParam" item="item" separator=",">(#{item.orderId}, #{item.tradeNo}, #{item.tradeType}, #{item.tradeStatus}, #{item.orderTime}, #{item.checkOutTime}, #{item.source}, #{item.sourceName}, #{item.receivedAmount}, #{item.custRealPay}, #{item.tradeAmount}, #{item.privilegeAmount})</foreach></insert>

写的不好,请各位看官多多担待,勿喷谢谢,有需要补充请留言!

相关文章:

MySql几十万条数据,同时新增或者修改

项目场景&#xff1a; 十万条甚至更多的数据新增或者修改 问题描述 现在有十万条数据甚至更多数据&#xff0c;在这些数据中&#xff0c;有部分数据存在数据库中&#xff0c;有部分数据确是新数据&#xff0c;存在的数据需要更新&#xff0c;不存在的数据需要新增 原因分析&a…...

如何提高MySQL DELETE 速度

提高MySQL中DELETE操作的速度通常涉及多个方面&#xff0c;包括优化查询、索引、表结构、硬件和配置等。以下是一些建议&#xff0c;以及一些示例代码&#xff0c;用于帮助我们提高DELETE操作的速度。 1.提高MySQL DELETE 速度的方法 1.1 优化查询 只删除必要的行&#xff1a…...

本地Zabbix开源监控系统安装内网穿透实现远程访问详细教程

文章目录 前言1. Linux 局域网访问Zabbix2. Linux 安装cpolar3. 配置Zabbix公网访问地址4. 公网远程访问Zabbix5. 固定Zabbix公网地址 &#x1f4a1;推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【…...

从Android刷机包提取System和Framework

因为VIVO的手机很难解锁BL和Root&#xff0c;故直接从ADB中获取完整的Framework代码是比较困难的。我就考虑直接从VIVO提供的刷机包文件中获取相关的代码 由于vivo把system.new.dat分割了&#xff0c;所以下一步&#xff0c;我们使用cat命令&#xff0c;合并这些文件&#xff0…...

分布式光纤测温DTS与红外热成像系统的主要区别是什么?

分布式光纤测温DTS和红外热成像系统在应用领域和工作原理上存在显著的区别&#xff0c;两者具有明显的差异性。红外热成像系统适用于表现扩散式发热、面式场景以及环境条件较好的情况下。它主要用于检测物体表面的温度&#xff0c;并且受到镜头遮挡或灰尘等因素的影响会导致失效…...

python数据分析-问卷数据分析(地理课)

学生问卷 分析学生背景&#xff1a;班级分布、每周地理课数量、地理成绩分布 根据问卷&#xff0c;可以知道&#xff1a; 班级分布&#xff1a; 七年级有118名学生。 八年级有107名学生。 每周地理课的数量&#xff1a; 有28名学生每周有1节地理课。 有99名学生每周有2…...

【ARM64 常见汇编指令学习 19.3 -- ARMv8 三目运算指令 csel 详细介绍】

请阅读【嵌入式开发学习必备专栏】 文章目录 三目运算指令 csel地址获取条件选择用途 三目运算指令 csel 本篇文章以下面汇编代码介绍三目运算指令csel&#xff1a; adr x0, pass_messageadr x1, fail_messagecsel x1, x0, x1, pl下面是对这几行代码的详解&#x…...

Docker 安装部署(CentOS 8)

以下所有操作都是基于 CentOS 8 系统进行操作的。安装的 Docker 版本为 25.0.5-1.el8。 1、卸载老版本 Docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine注&a…...

Python自动化

python操作excel # 安装第三个库 cmd -> pip install xlrb 出现success即安装成功 # 导入库函数 import xlrb # 打开的文件保存为excel文档对象 xlsx xlrb.open_workbook("文件位置") # C:\Users\Adminstator\Desktop\学生版.xlsx # 操作工作簿里的工作表 # 1.…...

自然语言处理领域的重大挑战:解码器 Transformer 的局限性

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

【机器学习】机器学习赋能医疗健康:从诊断到治疗的智能化革命

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀目录 &#x1f4d2;1. 引言&#x1f4d9;2. 机器学习在疾病诊断中的应用&#x1f9e9;医学影像分析&#xff1a;从X光到3D成像带代码&#x1…...

Elasticsearch6.7版本,内网中其他电脑无法连接

对于Elasticsearch 6.7版本&#xff0c;如果内网中其他电脑无法连接&#xff0c;配置文件可能是问题的一个关键部分。以下是一些可能的配置问题和相应的解决步骤&#xff0c;你可以按照这些步骤进行排查&#xff1a; 网络配置&#xff1a; 检查elasticsearch.yml配置文件中的ne…...

交友系统定制版源码 相亲交友小程序源码全开源可二开 打造独特的社交交友系统

交友系统源码的实现涉及到多个方面&#xff0c;包括前端页面设计、后端逻辑处理、数据库设计以及用户交互等。以下是一个简单的交友系统源码实现的基本框架和关键步骤: 1.数据库设计:用户表:存储用户基本信息&#xff0c;如用户ID、用户名、密码、头像、性别、年龄、地理位置…...

数据结构笔记39-48

碎碎念&#xff1a;想了很久&#xff0c;不知道数据结构这个科目最终该以什么笔记方式呈现出来&#xff0c;是纸质版还是电子版&#xff1f;后来想了又想&#xff0c;还是电子版吧&#xff1f;毕竟和计算机有关~&#xff08;啊哈哈哈哈哈哈哈&#xff09; 概率论已经更新完了&…...

2-3 基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合

基于matlab的NSCT-PCNN融合和创新算法&#xff08;NSCT-ML-PCNN &#xff09;图像融合。NSSCTest.m文件&#xff1a;用于查看利用NSSC算法分解出的图像并保存。其中的nlevel可调test.m文件&#xff1a;用于产生融合结果&#xff0c;其中一个参数需要设置&#xff1a;Low_Coeffs…...

机器学习笔记 - LoRA:大型语言模型的低秩适应

一、简述 1、模型微调 随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT) 。下图详细概述了此方法的工作原理。 完全微调FFT 的计算成本和资源需求很大,因为更新每…...

基于python实现视频和音频长度对齐合成并添加字幕

在许多视频编辑任务中&#xff0c;我们常常需要将视频和音频进行对齐&#xff0c;并添加字幕。本文将详细介绍如何使用Python实现这一功能&#xff0c;并在视频中添加中文字幕。我们将使用OpenCV处理视频帧&#xff0c;使用MoviePy处理音频和视频的合成&#xff0c;使用PIL库绘…...

爬虫-模拟登陆博客

import requests from bs4 import BeautifulSoupheaders {user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36 } # 登录参数 login_data {log: codetime,pwd: shanbay520,wp-submit: …...

【深度学习】【NLP】Bert理论,代码

论文 &#xff1a; https://arxiv.org/abs/1810.04805 文章目录 一、Bert理论BERT 模型公式1. 输入表示 (Input Representation)2. 自注意力机制 (Self-Attention Mechanism)3. Transformer 层 (Transformer Layer) 二、便于理解Bert的代码1. 自注意力机制2. Transformer 层3. …...

element table 点击某一行中按钮加载

在Element UI中&#xff0c;实现表格&#xff08;element-table&#xff09;中的这种功能通常涉及到数据处理和状态管理。当你点击某一行的按钮时&#xff0c;其他行的按钮需要动态地切换为加载状态&#xff0c;这可以通过以下步骤实现&#xff1a; 1.表格组件&#xff1a;使用…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...