当前位置: 首页 > news >正文

MySql几十万条数据,同时新增或者修改

项目场景:

十万条甚至更多的数据新增或者修改


问题描述

现在有十万条数据甚至更多数据,在这些数据中,有部分数据存在数据库中,有部分数据确是新数据,存在的数据需要更新,不存在的数据需要新增


原因分析:

几十万的数据有新增,有修改,我们肯定不能去每条都要去数据库查询验证是否存在,这样数据库也扛不住


解决方案:

提示:有两种解决方案简单记录下,在mybatis中使用的场景

1、第一种解决方式,使用on duplicate key update,主键重复去修改,不重复就新增这里的order_id就是主键

<insert id="addOrUpdateKryOrderMst" parameterType="list">insert into ${schema}.me_kry_order_mst(`order_id`,`trade_no`,`trade_type`,`trade_status`,`order_time`,`check_out_time`,`source`,`source_name`,`received_amount`,`cust_real_pay`,`trade_amount`,`privilege_amount`)values<foreach collection="kryOrderMstParam" item="item" separator=",">(#{item.orderId}, #{item.tradeNo}, #{item.tradeType}, #{item.tradeStatus}, #{item.orderTime}, #{item.checkOutTime}, #{item.source}, #{item.sourceName}, #{item.receivedAmount}, #{item.custRealPay}, #{item.tradeAmount}, #{item.privilegeAmount})</foreach>on duplicate key updatetrade_no =values (trade_no), trade_type =values (trade_type), trade_status =values (trade_status), order_time =values (order_time), check_out_time =values (check_out_time), `source` =values (`source`), source_name =values (source_name), received_amount =values (received_amount), cust_real_pay =values (cust_real_pay), trade_amount =values (trade_amount), privilege_amount =values (trade_amount)</insert>

2、第二种解决方式,使用replace into,若是主键存在就删除重新新增一条

    <insert id="addOrUpdateKryOrderMst" parameterType="list">replace into ${schema}.me_kry_order_mst(`order_id`,`trade_no`,`trade_type`,`trade_status`,`order_time`,`check_out_time`,`source`,`source_name`,`received_amount`,`cust_real_pay`,`trade_amount`,`privilege_amount`)values<foreach collection="kryOrderMstParam" item="item" separator=",">(#{item.orderId}, #{item.tradeNo}, #{item.tradeType}, #{item.tradeStatus}, #{item.orderTime}, #{item.checkOutTime}, #{item.source}, #{item.sourceName}, #{item.receivedAmount}, #{item.custRealPay}, #{item.tradeAmount}, #{item.privilegeAmount})</foreach></insert>

写的不好,请各位看官多多担待,勿喷谢谢,有需要补充请留言!

相关文章:

MySql几十万条数据,同时新增或者修改

项目场景&#xff1a; 十万条甚至更多的数据新增或者修改 问题描述 现在有十万条数据甚至更多数据&#xff0c;在这些数据中&#xff0c;有部分数据存在数据库中&#xff0c;有部分数据确是新数据&#xff0c;存在的数据需要更新&#xff0c;不存在的数据需要新增 原因分析&a…...

如何提高MySQL DELETE 速度

提高MySQL中DELETE操作的速度通常涉及多个方面&#xff0c;包括优化查询、索引、表结构、硬件和配置等。以下是一些建议&#xff0c;以及一些示例代码&#xff0c;用于帮助我们提高DELETE操作的速度。 1.提高MySQL DELETE 速度的方法 1.1 优化查询 只删除必要的行&#xff1a…...

本地Zabbix开源监控系统安装内网穿透实现远程访问详细教程

文章目录 前言1. Linux 局域网访问Zabbix2. Linux 安装cpolar3. 配置Zabbix公网访问地址4. 公网远程访问Zabbix5. 固定Zabbix公网地址 &#x1f4a1;推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【…...

从Android刷机包提取System和Framework

因为VIVO的手机很难解锁BL和Root&#xff0c;故直接从ADB中获取完整的Framework代码是比较困难的。我就考虑直接从VIVO提供的刷机包文件中获取相关的代码 由于vivo把system.new.dat分割了&#xff0c;所以下一步&#xff0c;我们使用cat命令&#xff0c;合并这些文件&#xff0…...

分布式光纤测温DTS与红外热成像系统的主要区别是什么?

分布式光纤测温DTS和红外热成像系统在应用领域和工作原理上存在显著的区别&#xff0c;两者具有明显的差异性。红外热成像系统适用于表现扩散式发热、面式场景以及环境条件较好的情况下。它主要用于检测物体表面的温度&#xff0c;并且受到镜头遮挡或灰尘等因素的影响会导致失效…...

python数据分析-问卷数据分析(地理课)

学生问卷 分析学生背景&#xff1a;班级分布、每周地理课数量、地理成绩分布 根据问卷&#xff0c;可以知道&#xff1a; 班级分布&#xff1a; 七年级有118名学生。 八年级有107名学生。 每周地理课的数量&#xff1a; 有28名学生每周有1节地理课。 有99名学生每周有2…...

【ARM64 常见汇编指令学习 19.3 -- ARMv8 三目运算指令 csel 详细介绍】

请阅读【嵌入式开发学习必备专栏】 文章目录 三目运算指令 csel地址获取条件选择用途 三目运算指令 csel 本篇文章以下面汇编代码介绍三目运算指令csel&#xff1a; adr x0, pass_messageadr x1, fail_messagecsel x1, x0, x1, pl下面是对这几行代码的详解&#x…...

Docker 安装部署(CentOS 8)

以下所有操作都是基于 CentOS 8 系统进行操作的。安装的 Docker 版本为 25.0.5-1.el8。 1、卸载老版本 Docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine注&a…...

Python自动化

python操作excel # 安装第三个库 cmd -> pip install xlrb 出现success即安装成功 # 导入库函数 import xlrb # 打开的文件保存为excel文档对象 xlsx xlrb.open_workbook("文件位置") # C:\Users\Adminstator\Desktop\学生版.xlsx # 操作工作簿里的工作表 # 1.…...

自然语言处理领域的重大挑战:解码器 Transformer 的局限性

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

【机器学习】机器学习赋能医疗健康:从诊断到治疗的智能化革命

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀目录 &#x1f4d2;1. 引言&#x1f4d9;2. 机器学习在疾病诊断中的应用&#x1f9e9;医学影像分析&#xff1a;从X光到3D成像带代码&#x1…...

Elasticsearch6.7版本,内网中其他电脑无法连接

对于Elasticsearch 6.7版本&#xff0c;如果内网中其他电脑无法连接&#xff0c;配置文件可能是问题的一个关键部分。以下是一些可能的配置问题和相应的解决步骤&#xff0c;你可以按照这些步骤进行排查&#xff1a; 网络配置&#xff1a; 检查elasticsearch.yml配置文件中的ne…...

交友系统定制版源码 相亲交友小程序源码全开源可二开 打造独特的社交交友系统

交友系统源码的实现涉及到多个方面&#xff0c;包括前端页面设计、后端逻辑处理、数据库设计以及用户交互等。以下是一个简单的交友系统源码实现的基本框架和关键步骤: 1.数据库设计:用户表:存储用户基本信息&#xff0c;如用户ID、用户名、密码、头像、性别、年龄、地理位置…...

数据结构笔记39-48

碎碎念&#xff1a;想了很久&#xff0c;不知道数据结构这个科目最终该以什么笔记方式呈现出来&#xff0c;是纸质版还是电子版&#xff1f;后来想了又想&#xff0c;还是电子版吧&#xff1f;毕竟和计算机有关~&#xff08;啊哈哈哈哈哈哈哈&#xff09; 概率论已经更新完了&…...

2-3 基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合

基于matlab的NSCT-PCNN融合和创新算法&#xff08;NSCT-ML-PCNN &#xff09;图像融合。NSSCTest.m文件&#xff1a;用于查看利用NSSC算法分解出的图像并保存。其中的nlevel可调test.m文件&#xff1a;用于产生融合结果&#xff0c;其中一个参数需要设置&#xff1a;Low_Coeffs…...

机器学习笔记 - LoRA:大型语言模型的低秩适应

一、简述 1、模型微调 随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT) 。下图详细概述了此方法的工作原理。 完全微调FFT 的计算成本和资源需求很大,因为更新每…...

基于python实现视频和音频长度对齐合成并添加字幕

在许多视频编辑任务中&#xff0c;我们常常需要将视频和音频进行对齐&#xff0c;并添加字幕。本文将详细介绍如何使用Python实现这一功能&#xff0c;并在视频中添加中文字幕。我们将使用OpenCV处理视频帧&#xff0c;使用MoviePy处理音频和视频的合成&#xff0c;使用PIL库绘…...

爬虫-模拟登陆博客

import requests from bs4 import BeautifulSoupheaders {user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36 } # 登录参数 login_data {log: codetime,pwd: shanbay520,wp-submit: …...

【深度学习】【NLP】Bert理论,代码

论文 &#xff1a; https://arxiv.org/abs/1810.04805 文章目录 一、Bert理论BERT 模型公式1. 输入表示 (Input Representation)2. 自注意力机制 (Self-Attention Mechanism)3. Transformer 层 (Transformer Layer) 二、便于理解Bert的代码1. 自注意力机制2. Transformer 层3. …...

element table 点击某一行中按钮加载

在Element UI中&#xff0c;实现表格&#xff08;element-table&#xff09;中的这种功能通常涉及到数据处理和状态管理。当你点击某一行的按钮时&#xff0c;其他行的按钮需要动态地切换为加载状态&#xff0c;这可以通过以下步骤实现&#xff1a; 1.表格组件&#xff1a;使用…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...