当前位置: 首页 > news >正文

LangChain入门学习笔记(一)——Hello World

什么是LangChain

LangChain是一个开源(github repo)的大语言模型应用开发框架,提供了一整套的工具、方法和接口去帮助程序员构建基于大语言模型的端到端应用。LangChain是长链(long chain)的意思,它的一个核心思想就是将应用的各阶段处理连成一条长串进行。

LangChain技术架构

官网中给出的LangChain架构图如下:

从图中不难看出,整个框架由以下几个库组成:

  • langchain-core:提供基础的抽象能力和LangChain表达语言(LCEL),这一层定义了LangChain的“协议”。
  • LangChain-Community:提供三方集成能力。比如一些合作伙伴的包,譬如langchain-openai / langchain-anthropic,通过LangChain-Community的接口与第三方服务进行交互。
  • LangChain:这一层提供的接口形成LangChain框架的基本认知架构,比如链、代理及检索策略(retrieval strategies)。

上面3个部分都提供了Python和JavaScript两个版本。下面是提供的工具:

  • Templates:用于构建和管理prompts模板,提供指令和上下文信息给到大模型。
  • LangServe:将LangChain的链部署为REST API服务。
  • LangSmith:一个用于debug、测试、评估和监控大模型应用的开发者平台工具。

LangChain核心学习要素

LangChain是一个大语言模型应用的开发框架,它的设计是围绕大语言模型的应用开发进行。简单说,基于大语言模型的应用在逻辑上划分为输入、模型处理、输出三个大的模块:

  • 输入:包含prompt和retriever两大块内容。前者有Text、PromptTemplate、以及Example Selectors这些,后者主要是Document Loader、Text Splitter、Vector Store和Embedding等。
  • 大模型:这是处理模块,包括LLM和Chat Model两大块概念。围绕它们有集成三方大模型接口、流化和缓存,以及Message类型等概念。
  • 输出:大模型处理之后的输出,涉及到应用的结果展示,因此有各种数据的Parser类型。
  • 组合:在上述三个实体之外,还有一些组合的概念,包括代理、链和工具,旨在扩展大模型的能力范围,提供更优的结果。

此外还有用于“粘合”模块的LCEL语言,提供了链式和并行处理机制。

LangChain版Hello World

LangChain的安装

安装LangChain库非常容易,以python版为例,只需执行如下命令:

pip install langchain

上面命令包含安装了langchain-core,如果需要单独安装langchain-core,可以执行:

pip install langchain-core

类似的,为了集成三方库,需要的langchain-community如下安装:

pip install langchain-community

安装langserver:

# 安装全部
pip install "langserve[all]"
## 仅安装client端
#pip install "langserve[client]"
## 仅安装server端
#pip install "langserve[server]"

安装langsmith:

pip install langsmith

LangChain本地运行LLM

LangChain支持使用api_key调用类似OpenAI和Anthropic的三方LLM,这里为了实现的稳定性选择本地方式部署,通过Ollama封装调用本地LLM。

安装Ollama

Ollama之于LLM,就像Docker之于Image。从Ollama官网下载对应版本安装Ollama后,执行下面命令获取模型:

#请结合本地硬件资源选择合适的模型
#可以参考Ollama官网介绍的模型参数规模来确定具体部署哪些模型
#https://ollama.com/library
ollama pull llama2

使用ollama list命令查看LLM是否已经拉取到本地:

LangChain的“Hello World!”

一个LangChain版本的"Hello World"代码如下:

from langchain_community.llms import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser#加载llama3模型。
llm = Ollama(model="llama3")#生成prompt模板。
prompt = ChatPromptTemplate.from_template("Hello {name}!")#输出解析。
output_parser = StrOutputParser()#LCEL生成链。
chain = prompt | llm | output_parser#调用链,传入模板参数,注意传入的是字典对象。
response = chain.invoke({"name": "World"})#打印响应结果
print(response)

上面代码输入一个简单文本,经过llm处理后,输出经过解析后最终给出模型应用的结果:

llama3大模型回应了“Hello there, Human! It's great to see you! How can I assist or chat with you today?”

恭喜你!完成了第一个用LangChain编写的大模型程序!代码里的注释简单介绍了每句的作用,现在不理解其中的语法没关系,后面我们将陆续学习其中的概念。

相关文章:

LangChain入门学习笔记(一)——Hello World

什么是LangChain LangChain是一个开源(github repo)的大语言模型应用开发框架,提供了一整套的工具、方法和接口去帮助程序员构建基于大语言模型的端到端应用。LangChain是长链(long chain)的意思,它的一个…...

[ROS 系列学习教程] 建模与仿真 - 使用 Arbotix 控制机器人

ROS 系列学习教程(总目录) 本文目录 一、Arbotix 简介二、安装Arbotix三、配置Arbotix控制器四、配置launch启动文件五、数据交互接口六、在rviz中仿真控制机器人6.1 直接发topic控制6.2 使用键盘控制6.3 编写代码控制机器人移动 前面讲了机器人的建模,是静态的&…...

java:使用JSqlParser给sql语句增加tenant_id和deleted条件

# 示例代码 【pom.xml】 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-core</artifactId><version>3.4.3.1</version> </dependency>【MyJSqlParserTest.java】 package com.chz.myJSqlParser;pu…...

华三HCL模拟器安装及华三防火墙配置

0、前言 最近跟模拟器杠上了&#xff0c;主要是需要运行防火墙&#xff0c;目前已经成功模拟出华为、山石防火墙&#xff0c;而且模拟出来的设备能与物理网络环境进行互联。现在我又盯上华三防火墙了。 首先下载模拟器&#xff1a; 下载地址&#xff1a;H3C网络设备模拟器官方免…...

MySQL基础---库的操作和表的操作(配着自己的实操图,简单易上手)

绪论​ 勿问成功的秘诀为何&#xff0c;且尽全力做您应该做的事吧。–美华纳&#xff1b;本章是MySQL的第二章&#xff0c;本章主要写道MySQL中库和表的增删查改以及对库和表的备份处理&#xff0c;本章是基于上一章所写若没安装mysql可以查看Linux下搭建mysql软件及登录和基本…...

【6】第一个Java程序:Hello World

一、引言 Java&#xff0c;作为一种广泛使用的编程语言&#xff0c;其强大的跨平台能力和丰富的库函数使其成为开发者的首选。对于初学者来说&#xff0c;编写并运行第一个Java程序是一个令人兴奋的时刻。本文将指导你使用Eclipse这一流行的集成开发环境&#xff08;IDE&#…...

pytorch神经网络训练(AlexNet)

导包 import osimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import Dataset, DataLoaderfrom PIL import Imagefrom torchvision import models, transforms 定义自定义图像数据集 class CustomImageDataset(Dataset): 定义一个自…...

构建大语言模型友好型网站

以大语言模型为代表的AI 技术迅速发展&#xff0c;将会影响原有信息网络的方式。其中一个明显的趋势是通过chatGPT 对话代替搜索引擎和浏览器来获取信息。 互联网时代&#xff0c;主要是通过网站&#xff08;website&#xff09;提供信息。网站主要为人类阅读的方式构建的。主要…...

Git代码冲突原理与三路合并算法

Git代码冲突原理 Git合并文件是以行为单位进行一行一行合并的&#xff0c;但是有些时候并不是两行内容不一样Git就会报冲突&#xff0c;这是因为Git会帮助我们进行分析得出哪个结果是我们所期望的最终结果。而这个分析依据就是三路合并算法。当然&#xff0c;三路合并算法并不…...

聆思CSK6大模型开发板英语评测类开源SDK详解

离线英文评测算法SDK 能力简介 CSK6 大模型开发套件可以对用户通过语音输入的英文单词进行精准识别&#xff0c;并对单词的发音、错读、漏读、多读等方面进行评估&#xff0c;进行音素级的识别&#xff0c;根据用户的发音给出相应的建议和纠正&#xff0c;帮助用户更好地掌握单…...

通用大模型VS垂直大模型,你更青睐哪一方?

这里写目录标题 一、通用大模型简介二、垂直大模型简介三、通用大模型与垂直大模型的比较四、如何选择适合的模型五、通用大模型和垂直大模型的应用场景六、总结 近年来&#xff0c;随着人工智能技术的飞速发展&#xff0c;大模型的应用越来越广泛。无论是自然语言处理、计算机…...

Python第二语言(十四、高阶基础)

目录 1. 闭包 1.1 使用闭包注意事项 1.2 小结 2. 装饰器&#xff1a;实际上也是一种闭包&#xff1b; 2.1 装饰器的写法&#xff08;闭包写法&#xff09; &#xff1a;基础写法&#xff0c;只是解释装饰器是怎么写的&#xff1b; 2.2 装饰器的语法糖写法&#xff1a;函数…...

python脚本之调用其他目录脚本

import sys# 添加新路径到搜索路径中 sys.path.append(/脚本父级)# 现在可以导入该路径下的模块了 from 脚本 import 方法方法()...

C# 事件(Event)定义及其使用

1.定义个委托和类 //委托 public delegate void ProductEventHandler(Product product);/// <summary> /// 产品 /// </summary> public class Product {public int Id { get; set; }public string Code { get; set; }public string Name { get; set; }private de…...

2.负载压力测试

负载压力测试是一种重要的系统测试方法&#xff0c;旨在评估系统在正常和峰值负载情况下的性能表现。 一、基本概念&#xff1a; 负载压力测试是在一定约束条件下&#xff0c;通过模拟实际用户访问系统的行为&#xff0c;来测试系统所能承受的并发用户数、运行时间、数据量等&…...

【AI工具】jupyter notebook和jupyterlab对比和安装

简单说&#xff0c;jupyterlab是jupyter notebook的下一代。 选择安装一个即可。 一、这里是AI对比介绍 Jupyter Notebook和JupyterLab都是基于Jupyter内核的交互式计算环境&#xff0c;但它们在设计和功能上有一些关键的区别&#xff1a; 用户界面&#xff1a; Jupyter Not…...

Linux 基本指令3

date指令 date[选项][格式] %Y--年 %m--月 %d--日 %H--小时 %M--分 %S--秒 中间可用其他符号分割&#xff0c;不能使用空格。 -s 设置时间&#xff0c;会返回设置时间的信息并不是改变当前时间 设置全部时间年可用-或者&#xff1a;分割日期和时间用空格分隔&#xff…...

在Linux系统中,可以使用OpenSSL来生成CSR(Certificate Signing Request)、PEM格式的公钥和PEM格式的私钥。

在Linux系统中&#xff0c;可以使用OpenSSL来生成CSR&#xff08;Certificate Signing Request&#xff09;、PEM格式的公钥和PEM格式的私钥。以下是生成这些文件的命令&#xff1a; 首先&#xff0c;生成私钥&#xff08;通常是以.key结尾&#xff0c;但可以转换成PEM格式&am…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 团队派遣(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍓OJ题目截图 📎在线评测链接 团队派遣(100分) 🌍 评测功能需要订阅专栏…...

Python数据分析与机器学习在医疗诊断中的应用

文章目录 &#x1f4d1;引言一、数据收集与预处理1.1 数据收集1.2 数据预处理 二、特征选择与构建2.1 特征选择2.2 特征构建 三、模型选择与训练3.1 逻辑回归3.2 随机森林3.3 深度学习 四、模型评估与调优4.1 交叉验证4.2 超参数调优 五、模型部署与应用5.1 模型保存与加载5.2 …...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...