当前位置: 首页 > news >正文

通用大模型VS垂直大模型,你更青睐哪一方?

这里写目录标题

  • 一、通用大模型简介
  • 二、垂直大模型简介
  • 三、通用大模型与垂直大模型的比较
  • 四、如何选择适合的模型
  • 五、通用大模型和垂直大模型的应用场景
  • 六、总结

在这里插入图片描述

近年来,随着人工智能技术的飞速发展,大模型的应用越来越广泛。无论是自然语言处理、计算机视觉还是其他领域,大模型都展现出了强大的能力。本文将围绕“通用大模型”和“垂直大模型”展开讨论,分析两者的优缺点,并探讨在不同场景下如何选择适合的模型。

一、通用大模型简介

通用大模型是指在大规模数据集上进行训练,具有广泛应用能力的模型。典型的通用大模型如OpenAI的GPT系列、Google的BERT等,这些模型能够在多种任务中展现出强大的通用性和适应性。

  • 优点:
    广泛适用性:通用大模型经过大规模数据集的训练,能够处理多种不同类型的任务。无论是文本生成、情感分析还是机器翻译,通用大模型都能够胜任。
    迁移学习:通用大模型可以通过微调,快速适应特定领域的任务。这种迁移学习能力使得通用大模型在新任务中的表现也非常出色。
    减少开发成本:由于通用大模型已经具备了强大的基础能力,开发者只需要进行少量的微调就能应用于特定任务,减少了开发时间和成本。
  • 缺点:
    计算资源消耗大:通用大模型通常规模庞大,训练和推理过程需要大量的计算资源,对于资源有限的企业来说是一个挑战。
    不够专业化:尽管通用大模型具备广泛的适用性,但在一些特定领域,其表现可能不如专门训练的垂直大模型。

二、垂直大模型简介

垂直大模型是指在特定领域数据上进行训练,专注于解决该领域内任务的模型。垂直大模型在医疗、金融、法律等领域有着广泛应用。例如,在医疗领域,垂直大模型可以帮助医生进行疾病诊断和治疗方案推荐。

  • 优点:
    专业性强:垂直大模型在特定领域的数据上进行训练,能够深入理解该领域的特定知识和任务,提供更精准的解决方案。
    高效性:由于垂直大模型专注于特定任务,其模型结构和训练过程可以针对性优化,推理速度和准确性更高。
    数据安全性:在某些敏感领域,如医疗和金融,使用垂直大模型可以更好地保护数据隐私和安全。
  • 缺点:
    适用范围有限:垂直大模型仅适用于特定领域的任务,对于跨领域的任务可能需要重新训练或开发新的模型。
    开发成本高:开发垂直大模型需要大量特定领域的数据和专业知识,开发成本相对较高。

三、通用大模型与垂直大模型的比较

  • 应用场景:
    通用大模型:适用于需要处理多种任务的场景,如聊天机器人、搜索引擎、智能助手等。这些场景需要模型具备广泛的适应能力和快速学习新任务的能力。
    垂直大模型:适用于专业性强的场景,如医疗诊断、金融分析、法律咨询等。这些场景需要模型具备深入的领域知识和高精准度。

  • 开发成本:
    通用大模型:开发成本较低,主要体现在模型的微调和应用上。由于通用大模型已经经过大规模数据训练,开发者只需要进行少量的调整即可。
    垂直大模型:开发成本较高,需要在特定领域内收集大量数据,并进行专门训练。此外,垂直大模型的开发还需要领域专家的参与,以确保模型的专业性和准确性。

  • 性能表现:
    通用大模型:在广泛任务中的表现非常出色,尤其是在多任务处理和迁移学习方面。然而,在一些特定任务中,通用大模型的表现可能不如垂直大模型。
    垂直大模型:在特定领域任务中的表现优异,能够提供高精准度和高效性的解决方案。然而,其适用范围较窄,对于跨领域任务的处理能力有限。

四、如何选择适合的模型

明确任务需求
在选择模型时,首先需要明确任务的需求。如果任务需要处理多种不同类型的任务,并且希望模型具备广泛的适应能力,那么通用大模型是一个不错的选择。如果任务需要深度专业知识,并且对精准度要求较高,那么垂直大模型可能更适合。

考虑计算资源
通用大模型通常规模庞大,训练和推理过程需要大量的计算资源。如果计算资源有限,可以考虑选择垂直大模型,针对特定任务进行优化,提高效率。

数据隐私和安全
在一些敏感领域,如医疗和金融,数据隐私和安全是非常重要的考虑因素。垂直大模型可以在本地进行训练和推理,避免数据泄露和安全风险。

开发成本和时间
开发成本和时间也是选择模型时需要考虑的重要因素。通用大模型由于已经经过大规模数据训练,开发成本和时间相对较低。而垂直大模型需要大量的领域数据和专家知识,开发成本和时间相对较高。

五、通用大模型和垂直大模型的应用场景

  • 通用大模型的应用场景:
    自然语言处理:如OpenAI的GPT系列和Google的BERT模型,能够用于聊天机器人、文本生成、翻译等多种自然语言处理任务。
    多任务处理:通用大模型在多任务处理中的表现非常出色,可以同时处理文本分类、情感分析、实体识别等多种任务。
    智能助手:通用大模型广泛应用于智能助手,如Siri、Alexa等,通过理解和生成自然语言,提供多种服务。
  • 垂直大模型的应用场景:
    医疗领域:如医疗诊断模型,能够通过分析医学影像、病历数据等,辅助医生进行疾病诊断和治疗方案推荐。
    金融领域:如风险评估模型,通过分析客户数据、市场数据等,进行信用评估、风险管理和投资决策。
    法律领域:如法律咨询模型,通过分析法律文书、案例数据等,提供法律咨询服务,辅助律师进行案件分析和处理。

六、总结

通用大模型和垂直大模型在人工智能的发展中各有千秋,具有不同的优势和适用场景。通用大模型凭借其广泛的适应性和强大的迁移学习能力,能够处理多种任务,适用于需要灵活应对各种应用的场景。而垂直大模型则专注于特定领域,凭借其专业性和高效性,在医疗、金融、法律等领域展现出强大的应用潜力。

在选择适合的模型时,需要综合考虑任务需求、计算资源、数据隐私和开发成本等因素。对于多任务处理和快速适应新任务的需求,通用大模型是一个理想的选择。而对于需要高精准度和专业知识的特定任务,垂直大模型则更为适合。

未来,随着技术的不断进步,通用大模型和垂直大模型有望实现融合发展,提供更加智能和高效的解决方案。同时,技术创新和数据隐私保护将是未来发展的重要方向。在人工智能的推动下,通用大模型和垂直大模型将为社会发展和人类生活带来更多的便利和进步。

无论选择哪一种模型,最终的目标都是通过人工智能技术,推动各行各业的高质量发展,实现绿色化、低碳化的未来,为人类社会创造更大的价值。

相关文章:

通用大模型VS垂直大模型,你更青睐哪一方?

这里写目录标题 一、通用大模型简介二、垂直大模型简介三、通用大模型与垂直大模型的比较四、如何选择适合的模型五、通用大模型和垂直大模型的应用场景六、总结 近年来,随着人工智能技术的飞速发展,大模型的应用越来越广泛。无论是自然语言处理、计算机…...

Python第二语言(十四、高阶基础)

目录 1. 闭包 1.1 使用闭包注意事项 1.2 小结 2. 装饰器:实际上也是一种闭包; 2.1 装饰器的写法(闭包写法) :基础写法,只是解释装饰器是怎么写的; 2.2 装饰器的语法糖写法:函数…...

python脚本之调用其他目录脚本

import sys# 添加新路径到搜索路径中 sys.path.append(/脚本父级)# 现在可以导入该路径下的模块了 from 脚本 import 方法方法()...

C# 事件(Event)定义及其使用

1.定义个委托和类 //委托 public delegate void ProductEventHandler(Product product);/// <summary> /// 产品 /// </summary> public class Product {public int Id { get; set; }public string Code { get; set; }public string Name { get; set; }private de…...

2.负载压力测试

负载压力测试是一种重要的系统测试方法&#xff0c;旨在评估系统在正常和峰值负载情况下的性能表现。 一、基本概念&#xff1a; 负载压力测试是在一定约束条件下&#xff0c;通过模拟实际用户访问系统的行为&#xff0c;来测试系统所能承受的并发用户数、运行时间、数据量等&…...

【AI工具】jupyter notebook和jupyterlab对比和安装

简单说&#xff0c;jupyterlab是jupyter notebook的下一代。 选择安装一个即可。 一、这里是AI对比介绍 Jupyter Notebook和JupyterLab都是基于Jupyter内核的交互式计算环境&#xff0c;但它们在设计和功能上有一些关键的区别&#xff1a; 用户界面&#xff1a; Jupyter Not…...

Linux 基本指令3

date指令 date[选项][格式] %Y--年 %m--月 %d--日 %H--小时 %M--分 %S--秒 中间可用其他符号分割&#xff0c;不能使用空格。 -s 设置时间&#xff0c;会返回设置时间的信息并不是改变当前时间 设置全部时间年可用-或者&#xff1a;分割日期和时间用空格分隔&#xff…...

在Linux系统中,可以使用OpenSSL来生成CSR(Certificate Signing Request)、PEM格式的公钥和PEM格式的私钥。

在Linux系统中&#xff0c;可以使用OpenSSL来生成CSR&#xff08;Certificate Signing Request&#xff09;、PEM格式的公钥和PEM格式的私钥。以下是生成这些文件的命令&#xff1a; 首先&#xff0c;生成私钥&#xff08;通常是以.key结尾&#xff0c;但可以转换成PEM格式&am…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 团队派遣(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍓OJ题目截图 📎在线评测链接 团队派遣(100分) 🌍 评测功能需要订阅专栏…...

Python数据分析与机器学习在医疗诊断中的应用

文章目录 &#x1f4d1;引言一、数据收集与预处理1.1 数据收集1.2 数据预处理 二、特征选择与构建2.1 特征选择2.2 特征构建 三、模型选择与训练3.1 逻辑回归3.2 随机森林3.3 深度学习 四、模型评估与调优4.1 交叉验证4.2 超参数调优 五、模型部署与应用5.1 模型保存与加载5.2 …...

vite.config.js如何使用env的环境变量

了解下环境变量在vite中 官方文档走起 https://cn.vitejs.dev/guide/env-and-mode.html#env-variables-and-modes 你见到的.env,.env.production等就是放置环境变量的 官方文档说到.env.[mode] # 只在指定模式下加载,比如.env.development只在开发环境加载 至于为什么是deve…...

MySql几十万条数据,同时新增或者修改

项目场景&#xff1a; 十万条甚至更多的数据新增或者修改 问题描述 现在有十万条数据甚至更多数据&#xff0c;在这些数据中&#xff0c;有部分数据存在数据库中&#xff0c;有部分数据确是新数据&#xff0c;存在的数据需要更新&#xff0c;不存在的数据需要新增 原因分析&a…...

如何提高MySQL DELETE 速度

提高MySQL中DELETE操作的速度通常涉及多个方面&#xff0c;包括优化查询、索引、表结构、硬件和配置等。以下是一些建议&#xff0c;以及一些示例代码&#xff0c;用于帮助我们提高DELETE操作的速度。 1.提高MySQL DELETE 速度的方法 1.1 优化查询 只删除必要的行&#xff1a…...

本地Zabbix开源监控系统安装内网穿透实现远程访问详细教程

文章目录 前言1. Linux 局域网访问Zabbix2. Linux 安装cpolar3. 配置Zabbix公网访问地址4. 公网远程访问Zabbix5. 固定Zabbix公网地址 &#x1f4a1;推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【…...

从Android刷机包提取System和Framework

因为VIVO的手机很难解锁BL和Root&#xff0c;故直接从ADB中获取完整的Framework代码是比较困难的。我就考虑直接从VIVO提供的刷机包文件中获取相关的代码 由于vivo把system.new.dat分割了&#xff0c;所以下一步&#xff0c;我们使用cat命令&#xff0c;合并这些文件&#xff0…...

分布式光纤测温DTS与红外热成像系统的主要区别是什么?

分布式光纤测温DTS和红外热成像系统在应用领域和工作原理上存在显著的区别&#xff0c;两者具有明显的差异性。红外热成像系统适用于表现扩散式发热、面式场景以及环境条件较好的情况下。它主要用于检测物体表面的温度&#xff0c;并且受到镜头遮挡或灰尘等因素的影响会导致失效…...

python数据分析-问卷数据分析(地理课)

学生问卷 分析学生背景&#xff1a;班级分布、每周地理课数量、地理成绩分布 根据问卷&#xff0c;可以知道&#xff1a; 班级分布&#xff1a; 七年级有118名学生。 八年级有107名学生。 每周地理课的数量&#xff1a; 有28名学生每周有1节地理课。 有99名学生每周有2…...

【ARM64 常见汇编指令学习 19.3 -- ARMv8 三目运算指令 csel 详细介绍】

请阅读【嵌入式开发学习必备专栏】 文章目录 三目运算指令 csel地址获取条件选择用途 三目运算指令 csel 本篇文章以下面汇编代码介绍三目运算指令csel&#xff1a; adr x0, pass_messageadr x1, fail_messagecsel x1, x0, x1, pl下面是对这几行代码的详解&#x…...

Docker 安装部署(CentOS 8)

以下所有操作都是基于 CentOS 8 系统进行操作的。安装的 Docker 版本为 25.0.5-1.el8。 1、卸载老版本 Docker sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine注&a…...

Python自动化

python操作excel # 安装第三个库 cmd -> pip install xlrb 出现success即安装成功 # 导入库函数 import xlrb # 打开的文件保存为excel文档对象 xlsx xlrb.open_workbook("文件位置") # C:\Users\Adminstator\Desktop\学生版.xlsx # 操作工作簿里的工作表 # 1.…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...