当前位置: 首页 > news >正文

时序预测 | Matlab基于Transformer多变量时间序列多步预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于Transformer多变量时间序列多步预测;
2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据;
3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;
注:程序和数据放在一个文件夹。
4.程序语言为matlab,程序可出预测效果图,指标图;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab基于Transformer多变量时间序列多步预测

在单 GPU 上训练。
|============================================================|
|  轮  |  迭代  |    经过的时间     |  小批量 RMSE  |  小批量损失  |  基础学习率  |
|     |      |  (hh:mm:ss)  |            |         |         |
|============================================================|
|   1 |    1 |     00:00:00 |       5.52 |    15.2 |  0.0010 |
|  10 |   50 |     00:00:02 |       4.55 |    10.4 |  0.0010 |
|  20 |  100 |     00:00:04 |       1.57 |     1.2 |  0.0010 |
|  30 |  150 |     00:00:07 |       1.54 |     1.2 |  0.0010 |
|  40 |  200 |     00:00:09 |       0.81 |     0.3 |  0.0010 |
|  50 |  250 |     00:00:11 |       1.19 |     0.7 |  0.0010 |
|============================================================|
训练结束: 已完成最大轮数。
历时 12.257705 秒。
1.均方差(MSE)76636.1226
2.根均方差(RMSE)276.8323
3.平均绝对误差(MAE):226.3397
4.平均相对百分误差(MAPE):5.2361%
5.R2:90.0432%MAE        MAPE       MSE      RMSE       R^2  ______    ________    _____    ______    _______Transformer    226.34    0.052361    76636    276.83    0.90043%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 150, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

时序预测 | Matlab基于Transformer多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于Transformer多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据; 3…...

suuk-s.php.jpg-python 库劫持

做virtualBox的端口映射吧 suukmedim文件白名单绕过、反弹shell、$paht环境变量更改、python 库劫持提权、Reptile提权、sandfly-processdecloak使用 服务扫描 ┌──(kali㉿kali)-[~] └─$ sudo nmap -sV -A -T 4 -p 22,80 192.168.18.238GetSHell 访问80http://192.168.…...

python3GUI--ktv点歌软件By:PyQt5(附下载地址)

文章目录 一.前言二.展示1.启动2.搜索2.服务1.首页2.天气预报3.酒水饮料4.酒水饮料2 3.服务4.灯光5.调音6.排行榜7.分类点歌9.歌手点歌10.歌手个人页 三.心得体会1.关于代码2.关于设计3.关于打包 四.总结 文件大小:33.…...

opencascade AIS_InteractiveContext源码学习2

AIS_InteractiveContext 前言 交互上下文(Interactive Context)允许您在一个或多个视图器中管理交互对象的图形行为和选择。类方法使这一操作非常透明。需要记住的是,对于已经被交互上下文识别的交互对象,必须使用上下文方法进行…...

scale()函数详解

scale()函数是R语言中用于标准化和中心化数据的一个函数。这个函数通常用于数据预处理,以便于后续的分析和建模。下面是对scale()函数的详细介绍: 用法 scale(x, center TRUE, scale TRUE)参数 x: 一个数值型向量、矩阵或数据框,是需要进…...

计算机基础学习有多重要?学哪些?如何学?

计算机基础是我们计算机生涯的开始,而对大学生来说,基础是一方面,更重要的是应对面试。这样说吧,校招:计算机基础占90%,专业知识占10%,社招:计算机基础占20%,专业知识占8…...

Oracle day9

------------------------------------------------------------------------------------ --创建用户 create user test1 identified by 123456; create user ZJun identified by 888888; --授予权限 grant create session to test1; grant create session to ZJun; --删除用…...

Race Condition竞争条件

Race Condition Question – why was there no race condition in the first solution (where at most N – 1) buffers can be filled?Processes P0 and P1 are creating child processes using the fork() system callRace condition on kernel variable next_available_pid…...

docker 删除本地镜像释放磁盘空间

时间一长,本地镜像文件特别多: 1 linux 配置crontab 定期删除 crontab l 查看 crontab e 编辑 30 3 * * * /home/mqq/gengmingming/cleanImage-realize.sh > /home/mqq/gengmingming/cleanImage-realize.log 2>&12 cleanImage-realize.sh …...

JVM中的垃圾回收器

文章目录 垃圾回收器发展史垃圾回收器分类按线程数分类按工作模式分类按处理方式分类 查看默认垃圾收集器评估垃圾回收器性能指标吞吐量暂停时间吞吐量对比暂停时间 7种经典的垃圾回收器垃圾回收器与垃圾分代垃圾收集器的组合关系Serial GCParNew GCParallel Scavenge GCSerial…...

记录一些可用的AI工具网站

记录一些可用的AI工具网站 AI对话大模型AI图片生成AI乐曲生成AI视频生成AI音频分离 AI对话大模型 当前时代巅峰,Microsoft Copilot:https://copilot.microsoft.com AI图片生成 stable diffusion模型资源分享社区,civitai:https…...

vue3页面传参

一&#xff0c;用query传参 方法&#xff1a; router.push({path: ‘路由地址’, query: ‘参数’}) 例子&#xff1a;a页面携带参数跳转到b页面并且b页面拿到a页面传递过来的参数 在路由router.ts配置 a页面&#xff1a; <template><div >a页面</div>…...

QNX OS微内核系统

微内核架构 微内核(Microkernel)架构是一种操作系统架构模式,其核心思想是尽量将操作系统的基本功能压缩在最小的核心中,而将其他服务(如设备驱动、文件系统、网络协议等)放在用户空间中运行,从而增加系统的灵活性和安全性,这种架构有几个主要特点和优势: 最小化核心…...

ViT:5 Knowledge Distillation

实时了解业内动态&#xff0c;论文是最好的桥梁&#xff0c;专栏精选论文重点解读热点论文&#xff0c;围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;…...

2024头歌数据库期末综合(部分题)

目录 第7关&#xff1a;数据查询三 任务描述 知识补充 答案 第8关&#xff1a;数据查询四 任务描述 知识补充 答案 本篇博客声明&#xff1a;所有题的答案不在一起&#xff0c;可以去作者博客专栏寻找其它文章。 第7关&#xff1a;数据查询三 任务描述 本关任务&#x…...

【Flask】学习

参考B站视频&#xff1a;https://www.bilibili.com/video/BV1v7411M7us/ 目录 第一讲 什么是 flask 修饰器、路由规则 flask 变量规则&#xff0c;灵活传参数据类型&#xff1a;str、int、float&#xff08;正浮点数&#xff0c;传int会报错&#xff09;、path、uuid app.…...

图像数字化基础

一、像素 1、获取图像指定位置的像素 import cv2 image cv2.imread("E:\\images\\2.png") px image[291,218] print("坐标(291,218)上的像素的BGR值是&#xff1a;",px) &#xff08;1&#xff09;RGB色彩空间 R通道&#xff1a;红色通道 G通道&…...

让你的Python代码更简洁:一篇文章带你了解Python列表推导式

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 列表推导式 📒📝 语法📝 条件筛选📝 多重循环📝 列表推导式的优点📝 使用场景📝 示例代码🎯 示例1🎯 示例2⚓️ 相关链接 ⚓️📖 介绍 📖 在Python编程中,列表推导式是一种强大且高效的语法,它允许你用…...

基于Matlab的BP神经网络的车牌识别系统(含GUI界面)【W7】

简介&#xff1a; 本系统结合了图像处理技术和机器学习方法&#xff08;BP神经网络&#xff09;&#xff0c;能够有效地实现车牌的自动识别。通过预处理、精确定位、字符分割和神经网络识别&#xff0c;系统能够准确地识别各种车牌图像&#xff0c;并在智能交通管理、安防监控等…...

jetpack compose的@Preview和自定义主题

1.Preview Preview可以在 Android Studio 的预览窗口中实时查看和调试 UI 组件。 基本使用 import androidx.compose.foundation.layout.fillMaxSize import androidx.compose.material.MaterialTheme import androidx.compose.material.Surface import androidx.compose.ma…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...