当前位置: 首页 > news >正文

Python爬虫技术及其原理探秘

导言

随着互联网的发展,大量的数据被存储在网络上,而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言,被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理,并提供相关的代码案例。

1. HTTP请求与响应

在爬取网页数据之前,我们需要了解HTTP协议,它是在Web上进行数据交互的基础协议。HTTP请求与响应是爬虫工作的基础,我们需要了解它们的结构和交互方式。

1.1 HTTP请求

HTTP请求由请求行、请求头和请求体组成。其中,请求行包括请求方法、请求的URL和协议版本;请求头包含了用于描述请求的各种信息;请求体是可选项,用于传输请求的数据。下面是一个HTTP请求的示例:

GET /path/to/resource HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8
...

在Python中,我们可以使用requests库发送HTTP请求。下面是一个使用requests库发送GET请求的示例代码:

import requestsurl = 'http://www.example.com'
response = requests.get(url)
print(response.text)

1.2 HTTP响应

HTTP响应由响应行、响应头和响应体组成。响应行包含了响应的状态码和状态消息;响应头包含了用于描述响应的各种信息;响应体是实际返回的数据。下面是一个HTTP响应的示例:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 1234
...
<html>
...
</html>

在Python中,我们可以使用requests库获取HTTP响应。下面是一个获取HTTP响应的示例代码:

import requestsurl = 'http://www.example.com'
response = requests.get(url)
print(response.status_code)
print(response.headers)
print(response.text)

2. 网页解析技术

爬虫需要从网页中提取有用的数据,而网页通常采用HTML或XML格式存储。为了解析网页,我们可以使用以下几种技术。

2.1 正则表达式

正则表达式是一种强大的文本匹配技术,我们可以使用它来提取网页中的数据。例如,我们可以使用正则表达式提取HTML中的所有链接。

下面是一个使用正则表达式提取HTML中的链接的示例代码:

import rehtml = '< a href=" ">Example</ a>'
links = re.findall('< a href="([^"]*)">([^<]*)</ a>', html)
for link in links:print(link[0], link[1])

2.2 XPath

XPath是一种用于在XML文档中定位节点的语言,它可以与HTML文档一样使用。我们可以使用XPath提取网页中的数据。例如,我们可以使用XPath提取HTML中的所有链接。

下面是一个使用XPath提取HTML中的链接的示例代码(需要使用lxml库):

from lxml import etreehtml = '< a href="http://www.example.com">Example</ a>'
tree = etree.HTML(html)
links = tree.xpath('//a')
for link in links:print(link.get('href'), link.text)

2.3 BeautifulSoup

BeautifulSoup是一个HTML和XML解析库,提供了简单灵活的API。我们可以使用BeautifulSoup解析网页并提取数据。

下面是一个使用BeautifulSoup解析HTML并提取链接的示例代码(需要使用beautifulsoup4库):

from bs4 import BeautifulSouphtml = '< a href="http://www.example.com">Example</ a>'
soup = BeautifulSoup(html, 'html.parser')
links = soup.find_all('a')
for link in links:print(link.get('href'), link.text)

2.4 提取数据

有了解析后的HTML内容,我们可以根据具体的需求,使用CSS选择器或XPath表达式来定位和提取所需的数据。

下面示范了使用BeautifulSoup提取网页中所有超链接的代码:

links = soup.select('a')
for link in links:href = link['href']text = link.get_text()print(href, text)

在这个示例中,我们使用soup.select()方法配合CSS选择器字符串'a',选取网页中所有的<a>标签。然后使用link['href']link.get_text()分别提取超链接的URL和文字内容。

2.5 数据存储与再处理

爬虫获取到数据后,通常需要将其保存起来供后续处理和分析。常见的存储方式有保存为文件(如CSV、JSON格式),或者存储到数据库中。

以下是一个使用csv库将提取的数据保存为CSV文件的示例代码:

import csvdata = [['url', 'text'], [href, text]]
with open('output.csv', 'w', newline='') as file:writer = csv.writer(file)writer.writerows(data)

在这个示例中,我们首先准备好要保存的数据data,其中包含了提取到的URL和文字内容。然后使用csv.writer()writerows()方法将数据写入到CSV文件中。

3. 爬虫框架

在实际的爬虫开发中,我们通常会使用一些爬虫框架,它们提供了更高级别的抽象和更方便的功能。以下是一些常用的Python爬虫框架。

3.1 Scrapy

Scrapy是一个快速、可扩展且高级别的Web爬取框架。它提供了强大的抓取功能和数据处理能力,使爬虫开发更加高效。下面是一个使用Scrapy爬取网页的示例代码:

import scrapyclass MySpider(scrapy.Spider):name = 'example.com'start_urls = ['http://www.example.com']def parse(self, response):# 处理响应# 提取数据# 发送更多请求pass

3.2 BeautifulSoup + requests

BeautifulSoup和requests的组合是另一种常用的爬虫开发方式。使用BeautifulSoup解析网页,使用requests发送HTTP请求。

下面是一个使用BeautifulSoup和requests爬取网页的示例代码:

import requests
from bs4 import BeautifulSoupurl = 'http://www.example.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# 处理页面,提取数据

3.3 Selenium

Selenium是一种自动化浏览器工具,可以模拟浏览器行为。它通常与浏览器驱动一起使用,如ChromeDriver。使用Selenium可以解决一些JavaScript渲染的网页爬取问题。

下面是一个使用Selenium模拟浏览器爬取网页的示例代码(需要使用selenium库):

from selenium import webdriverdriver = webdriver.Chrome('path/to/chromedriver')
driver.get('http://www.example.com')
# 处理页面,提取数据
driver.quit()

4. 其他

除了了解基本的爬虫工作原理,还需要掌握一些相关的技术,以便更好地应对各种复杂情况。下面是几个常用的技术要点:

4.1 User-Agent伪装

为了防止网站屏蔽爬虫,我们可以在发送HTTP请求时设置User-Agent头部,将其伪装成浏览器的请求。这样可以减少被服务器识别为爬虫的概率。

Python requests库可以通过设置headers参数来添加自定义的HTTP头部。

headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
}
response = requests.get(url, headers=headers)

4.2 反爬虫策略与解决方法

为了防止被爬虫抓取数据,网站可能会采取一些反爬虫策略,如限制请求频率、设置验证码、使用动态加载等。对于这些情况,我们可以采取以下解决方法:

  • 限制请求频率:可以通过设置合适的时间间隔来控制请求的频率,避免过快访问网站。

  • 验证码识别:可以使用第三方的验证码识别库(如Tesseract-OCR)来自动识别并输入验证码。

  • 动态加载页面:对于使用JavaScript动态加载的页面,可以使用Selenium库模拟浏览器行为进行处理。

4.3 网页登录与Session管理

有些网站需要登录后才能获取到所需的数据。在这种情况下,我们可以通过模拟登录行为,发送POST请求并记录登录后的Session信息,以便后续的数据访问。

下面是一个使用requests库模拟登录的示例代码:

import requestslogin_url = 'https://example.com/login'
data = {'username': 'your_username','password': 'your_password'
}
response = requests.post(login_url, data=data)
session = response.cookiesdata_url = 'https://example.com/data'
response = requests.get(data_url, cookies=session)
data = response.text

在这个示例中,我们首先发送POST请求模拟登录,将用户名和密码作为表单数据data发送给登录页面login_url,并保存返回的Session信息。

然后我们可以使用requests.get()方法发送GET请求,同时将保存的Session信息作为cookies参数传入,以便获取登录后的数据。

5. 实例:爬取简书网站文章信息

为了更好地演示Python爬虫的技术和原理,我们选取了简书网站作为示例。我们将爬取简书网站中的热门文章列表,提取出每篇文章的标题、作者和链接。

以下是完整的实现代码:

import requests
from bs4 import BeautifulSoup# 发送HTTP请求
url = 'https://www.jianshu.com'
response = requests.get(url)
html = response.text# 解析HTML内容
soup = BeautifulSoup(html, 'html.parser')# 提取数据
articles = soup.select('.note-list li')data = []
for article in articles:title = article.select('a.title')[0].string.strip()author = article.select('.name')[0].string.strip()href = 'https://www.jianshu.com' + article.select('a.title')[0]['href']data.append([title, author, href])# 数据存储
import csv
with open('jianshu_articles.csv', 'w', newline='', encoding="utf-8") as file:writer = csv.writer(file)writer.writerows(data)

在这个示例中,我们首先发送GET请求获取简书网站的HTML内容,然后使用BeautifulSoup库进行解析。

接着,我们使用CSS选择器字符串.note-list li选取所有文章的外层容器,并使用CSS选择器和字典键值对的方式提取文章的标题、作者和链接。

最后,我们采用CSV格式将提取的数据保存到了名为jianshu_articles.csv的文件中。

结语

本文详细介绍了Python爬虫所需的技术及其原理,包括HTTP请求与响应、网页解析技术和爬虫框架。通过掌握这些技术,我们可以有效地开发出强大且高效的Python爬虫。希望本文能对你理解和掌握Python爬虫有所帮助。

请注意,在进行网络爬虫时,需要遵守网站的使用条款,并遵守相关法律法规。同时,合理使用爬虫技术,不对网络资源进行滥用和破坏。

相关文章:

Python爬虫技术及其原理探秘

导言 随着互联网的发展&#xff0c;大量的数据被存储在网络上&#xff0c;而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言&#xff0c;被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理&#xff0c;并提供相关的代码案例。…...

堆和栈的区别及应用场景

堆和栈的区别及应用场景 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在计算机科学和编程领域&#xff0c;堆&#xff08;Heap&#xff09;和栈&#xff08…...

vant的dialog触发了其他overlay

原代码: <!-- dialog --><van-dialog v-model"showTipsDialog" title"温馨提示"><p>dialog内容</p></van-dialog><!-- overlay --><van-overlay style"display: flex" :show"showLoadingOverlay&q…...

Linux驱动开发笔记(十二)并发与竞争

文章目录 前言一、并发与竞争的引入1.1 并发1.2 竞争1.3 解决方法 二、原子操作2.1 概念2.2 使用方法 三、自旋锁3.1 概念3.2 使用方法3.3 自旋锁死锁 四、信号量4.1 概念4.2 使用方法 五、互斥锁5.1 概念5.2 使用方法 前言 Linux的子系统我们已经大致学习完了&#xff0c;笔者…...

【Mac】Listen 1 for Mac(最强的音乐搜索工具)软件介绍

软件介绍 Listen 1 for Mac 是一款非常方便的音乐播放软件&#xff0c;主要功能是集成多个音乐平台&#xff0c;让用户可以方便地搜索、播放和管理音乐。它是一个用 Python 语言开发的免费开源综合音乐搜索工具项目&#xff0c;最大的亮点在于可以搜索和播放来自网易云音乐&am…...

nginx 1024 worker_connections are not enough while connecting to upstream

现象 请求api响应慢&#xff0c;甚至出现504 gateway timeout&#xff0c;重启后端服务不能恢复&#xff0c;但重启nginx可以恢复。 解决方案 worker_connections使用了默认值 1024&#xff0c;当流量增长时&#xff0c;导致连接不够 在nginx.conf中修改连接数就可以了&…...

在Ubuntu 16.04上安装和配置Elasticsearch的方法

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 Elasticsearch 是一个用于实时分布式搜索和数据分析的平台。它因易用性、强大功能和可扩展性而备受欢迎。 Elasticsearch 支持 R…...

C#给SqlSugar封装一个单例类

.NET兼职社区 可以直接用&#xff0c;轻量方便&#xff0c;无需重复造轮子。 这里只对CRUD进行封装&#xff0c;我的应用比较简单。 using SqlSugar; using System.Collections.Generic;namespace MusicApp.Assist {internal class SqlSugarAssist{private static readonly ob…...

Postman接口测试工具的原理及应用详解(六)

本系列文章简介&#xff1a; 在当今软件开发的世界中&#xff0c;接口测试作为保证软件质量的重要一环&#xff0c;其重要性不言而喻。随着前后端分离开发模式的普及&#xff0c;接口测试已成为连接前后端开发的桥梁&#xff0c;确保前后端之间的数据交互准确无误。在这样的背景…...

【算法 之插入排序 原理及案例】

插入排序原理&#xff1a; 插入排序&#xff08;Insertion Sort&#xff09;是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常…...

第一节:如何开发第一个spring boot3.x项目(自学Spring boot 3.x的第一天)

大家好&#xff0c;我是网创有方&#xff0c;从今天开始&#xff0c;我会记录每篇我自学spring boot3.x的经验。只要我不偷懒&#xff0c;学完应该很快&#xff0c;哈哈&#xff0c;更新速度尽可能快&#xff0c;想和大佬们一块讨论&#xff0c;如果需要讨论的欢迎一起评论区留…...

JS逆向:由 words 、sigBytes 引发的一系列思考与实践

【作者主页】&#xff1a;小鱼神1024 【擅长领域】&#xff1a;JS逆向、小程序逆向、AST还原、验证码突防、Python开发、浏览器插件开发、React前端开发、NestJS后端开发等等 在做JS逆向时&#xff0c;你是否经常看到 words 和 sigBytes 这两个属性呢&#xff0c;比如&#xff…...

计算机的错误计算(十五)

摘要 介绍历史上由于计算精度问题引起的灾难或事件。 今天换个话题&#xff0c;说说历史上曾经发生过的一些事件。 1961 年 , 美国麻省理工学院气象学家洛伦兹在仿真天气预报时 , 将 0.506127 舍入到 0.506 , 所得计算结果大相径庭 ! 这种“差之毫厘 , 谬以千里”的现象…...

制作img文件

安装软件包 sudo apt-get install dosfstools dump parted kpartx 创建空白img文件 sudo dd if/dev/zero ofraspberrypi.img bs1M count4000 给img文件分区 sudo parted raspberrypi.img --script -- mklabel msdos sudo parted raspberrypi.img --script -- mkpart primar…...

GB28181视频汇聚平台EasyCVR接入Ehome设备视频播放出现异常是什么原因?

多协议接入视频汇聚平台EasyCVR视频监控系统采用了开放式的架构&#xff0c;系统可兼容多协议接入&#xff0c;包括市场标准协议&#xff1a;国标GB/T 28181协议、GA/T 1400协议、JT808、RTMP、RTSP/Onvif协议&#xff1b;以及主流厂家私有协议及SDK&#xff0c;如&#xff1a;…...

Java利用poi实现word,excel,ppt,pdf等各类型文档密码检测

介绍 最近工作上需要对word,excel,ppt,pdf等各类型文档密码检测&#xff0c;对文件进行分类&#xff0c;有密码的和没密码的做区分。查了一堆资料和GPT都不是很满意&#xff0c;最后东拼西凑搞了个相对全面的检测工具代码类&#xff0c;希望能给需要的人带来帮助。 说明 这段…...

顺序表与链表学习笔记

顺序表及其结构定义 &#xff08;1&#xff09;结构定义 顺序存储&#xff1a; 顺序表的元素按顺序存储在一块连续的内存区域中&#xff0c;每个元素占用相同大小的存储空间。通过数组实现&#xff0c;每个元素可以通过下标快速访问。 存储密度高&#xff1a; 因为顺序表使用…...

2.SQL注入-字符型

SQL注入-字符型(get) 输入kobe查询出现id和邮箱 猜测语句,字符在数据库中需要用到单引号或者双引号 select 字段1,字段2 from 表名 where usernamekobe;在数据库中查询对应的kobe&#xff0c;根据上图对应上。 select id,email from member where usernamekobe;编写payload语…...

在Ubuntu 14.04上安装和配置Elasticsearch的方法

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 Elasticsearch 是一个用于实时分布式搜索和数据分析的平台。它因易用性、强大功能和可扩展性而备受欢迎。 Elasticsearch 支持 R…...

C++:inline关键字nullptr

inline关键字 C中inline使用关键点强调 (1)inline是一种“用于实现的关键字”&#xff0c;而不是一种“用于声明的关键字”&#xff0c;所以关键字 inline 必须与函数定义体放在一起&#xff0c;而不是和声明放在一起 (2)如果希望在多个c文件中使用&#xff0c;则inline函数应…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...