当前位置: 首页 > news >正文

核方法总结(四)——高斯过程回归学习笔记

一、定义

          基于核方法的线性回归模型和传统线性回归一样,可以用未知数据进行预测,但不能确定

预测的可信度。在参考书第二章中可知,基于贝叶斯方法可以实现对未知数据依概率预测,进而可得到预测的可信度。这一方法中,通过对模型参数w引入先验概率p(w),通过学习可得到该参数的后验概率p(w|D),并以此对x进行依概率预测,形式化如下:

      p(t_{*}\mid x_{*}) = \int p(t_{*}\mid x_{*};w)p(w\mid D)dw  1---(1)

          其中p(t_{*}\mid x_{*};w) 是生成模型,可以是任何已知或设定的某种分布形式的模型,每个模型由w唯一确定,p(w|D)是基于训练数据D得到的对w的后验估计,计算如下:

p(w|D) \propto p(D|w)p(w)  1---(2)

         上式通过w的先验概率p(w)来实现对每个具体模型p(t_{*}\mid x_{*};w)赋予先验概率。在核方法中,由于不存在一个显式的w,因此通过引入先验的方法无法适用。从而这里引入了高斯过程回归,而高斯过程回归就是基于核方法并引入随机性为高斯分布的一种统计回归方法,回归的结果就是高斯随机预测函数,并且可以得到预测的信度。

  二、高斯过程回归的推导

      2.1 高斯过程

          高斯过程是随机过程的一种。随机过程和随机变量相对,是反映一系列变量或一组变量的分布特性,即各个组成变量以某种随机规律或分布取值。假设集合X有x1、x2.....xn个变量,如对每个变量进行一次采样,这些采样值就构成了一个定义在X上的函数f,这一函数显然是随机函数,而且f的形式显然就定义了具体的随机过程,所以也可以认为随机过程是以随机函数为自变量的概率分布,这个”概率分布“由f变量随机生成采样值生成。

     任何一个变量集合X(进行采样)所蕴含的有限维函数分布族满足一致性和对称性就能保证X为一随机过程,且这一有限维函数分布族恰好就是该随机过程的有限维分布函数。这称之为      Kolmogorov定理。

      所谓一致性就是,是指从X中任选一个子集,得到的概率分布形式是一致的。更严格地说,如果存在两个子集X1和X2,且X1\bigcap X2 \neq 0,则由X1或X2通过边缘化其他变量导出的P(X1\bigcap X2 )应一致,即:

  1---(3)

      对称性,是指X中任选一个子集,当对子集的变量交换位置时,其分布函数不变。

Kolmogorov定理表明,集合X确定的随机过程可以由其任意自己的子集的分布形式描述(Finite-Dimensional Distribution,f.f.d)

2.2 高斯过程回归推导

     高斯过程是f.f.d为高斯分布的一种随机过程,即任取一个有限点集组成的矩阵X=[x1,x2,...xn],其目标变量取值组成的向量y=[y1,y2,...yn]满足高斯分布N(y;\mu(X),K(x) )。设

\mu(X) =0,则该高斯过程由协方差矩阵K(x)确定,其中K(X)ij = k(xi,xj), k(.,.)为任意核函数。

     已知一个集合的分布形式,则任意一个子集也具有同样的分布,这一性质可以用来采样一个高斯过程,假设当前已经完成采样的函数点集为X,对一个新采样点X_{*} ,有X\hat{} = X \bigcup \{X_{*}\} 对应的采样值y\hat{}同样符合高斯分布。

   即:1----(4)

其中:

K\hat{} = \begin{pmatrix} K & k_{}\\ k^{T}_{} & \nu \end{pmatrix}  1---(5)

其中,K是训练集X的Gram矩阵,k_{} =k(x_{*},x_{n}), v = k(x_{*},x_{*})。由高斯分布的性质,可知其条件分布也是高斯的,即:

1--(6)  1---(7) 1---(8)

      下面用高斯过程完成回归任务,设有训练集{(x_{i},t_{i})},定义如下回归模型:

               t = y + \varepsilon  1---(9)

其中y是一个高斯过程,\varepsilon \sim N(0,\beta ^{-1}I)是观测噪音,则有:

p(t) = \int p(t|y)p(y)dy  1---(10)

由于p(t|y)和p(y)都是高斯的,有积分p(t):

p(t) = N(t;0,C)   1---(11)

其中:C= K + \beta ^{-1}I 1----(12)

1-----(11)式实际上就完成了一次高斯回归。

因此 t 也是一个高斯过程,基于式类似1---(6)的推导过程,可知对于增量x_{*},可得类似的条件高斯回归模型,进而得到回归结果:

   

 1----(13)、1----(14)、1----(15)

    回顾上述推导过程,可以发现并没有定义一个类似线性回归的显示预测函数,而是通过定义数据间的相关性来描述整体分布属性,从而隐式定义了从x-->y的随机预测函数y(x),即高斯过程。

     和参考书5.1节中基于核方法的正则化线性回归模型相比,高斯过程不仅引入了数据间的距离,而且通过该距离定义了一个联合概率分布,从而引入了预测模型的随机性。

    引入这一随机性事实上给出了预测过程的可信度。比较参考书5.9式: 

和 1---(14)可知 基于高斯过程预测的期望值和传统核方法得到的预测值是一致的(C = K +\beta ^{-1}I 和 K+ \lambda I 形式一致)。但高斯分布给出了1---(15)式的估计方差。

因此高斯过程回归可以认为是传统核方法的随机版本。

三、总结

           本文是学习《机器学习导论》(清华大学出版社,中文版,王东,2021年)的摘录总结或笔记。

    

    

    

相关文章:

核方法总结(四)——高斯过程回归学习笔记

一、定义 基于核方法的线性回归模型和传统线性回归一样,可以用未知数据进行预测,但不能确定 预测的可信度。在参考书第二章中可知,基于贝叶斯方法可以实现对未知数据依概率预测,进而可得到预测的可信度。这一方法中,通…...

【Python3的内置函数和使用方法】

目录 Python 特点 Python 中文编码 Python 变量类型 Python列表 Python 元组 元组是另一个数据类型,类似于 List(列表) Python 字典 Python数据类型转换 Python 运算符 Python算术运算符 Python比较运算符 Python赋值运算符 Pyt…...

递推算法计算信号特征

在线算法(在线计算或递推计算)能够在不存储全部数据的情况下逐步更新信号的特征信息,非常适合资源受限的单片机应用场景。 用途:单片机边采集ADC边计算,最终将采集的信号特征计算结果…...

spring-boot-configuration-processor注释处理器

开源项目SDK:https://github.com/mingyang66/spring-parent 个人文档:https://mingyang66.github.io/raccoon-docs/#/ spring-boot-configuration-processor是springboot提供的一个注释处理器(annotation processor),它用于在编译…...

Python和MATLAB粘性力接触力动态模型半隐式欧拉算法

🎯要点 🎯运动力模型计算制作过程:🖊相机捕捉网球运动图,制定运动数学模型,数值微分运动方程 | 🖊计算运动,欧拉算法离散积分运动,欧拉-克罗默算法微分运动方程 &#…...

webstorm无法识别tsconfig.json引用项目配置文件中的路径别名

问题 vite项目模板中,应用的ts配置内容写在tsconfig.app.json文件中,并在tsconfig.json通过项目引用的方式导入 {"files": [],"references": [{"path": "./tsconfig.app.json"},{"path": "./t…...

qiankun微前端:qiankun+vite+vue3+ts(未完待续..)

目录 什么是微前端 目前现有的微前端 好处 使用 子应用的页面在主应用里显示 什么是微前端 微前端是一种多个团队通过独立发布功能的方式来共同构建现代化 web 应用的技术手段及方法策略。 我的理解就是将一个大型的前端应用拆分成多个模块,每个微前端模块可以由…...

001:开源交易系统开发实战开篇

本专栏采用融入【主力思维】的方法学,包含数据抓取、特征模型开发、历史验证回归测试、每日动态风险评估管理等技术,较大的增强股票投资胜率,让IT开发者拥有一套属于自己思路的专用交易软件。 先简要介绍系统成功和项目,后续持续…...

Pytorch实战(一):LeNet神经网络

文章目录 一、模型实现1.1数据集的下载1.2加载数据集1.3模型训练1.4模型预测 LeNet神经网络是第一个卷积神经网络(CNN),首次采用了卷积层、池化层这两个全新的神经网络组件,接收灰度图像,并输出其中包含的手写数字&…...

RabbitMq的基础及springAmqp的使用

RabbitMq 官网:RabbitMQ: One broker to queue them all | RabbitMQ 什么是MQ? mq就是消息队列,消息队列遵循这先入先出原则。一般用来解决应用解耦,异步消息,流量削峰等问题,实现高性能,高可用&#xf…...

uniapp uniCloud云开发

uniCloud概述 uniCloud 是 DCloud 联合阿里云、腾讯云、支付宝云,为开发者提供的基于 serverless 模式和 js 编程的云开发平台。 uniCloud 的 web控制台地址:https://unicloud.dcloud.net.cn 文档:https://doc.dcloud.net.cn/uniCloud/ un…...

智能扫地机,让生活电器更加便民-NV040D扫地机语音方案

一、语音扫地机开发背景: 随着人工智能和物联网技术的飞速发展,智能家居设备已成为现代家庭不可或缺的一部分。其中,扫地机作为家庭清洁的重要工具,更是得到了广泛的关注和应用。 然而,传统的扫地机在功能和使用上仍存…...

【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路

Elasticsearch的索引机制 Elasticsearch使用的是倒排索引,所谓的倒排索引是相对于正排索引而言的。 在一般的文件系统中,索引是文档映射到关键字,而倒排索引则相反,是从关键字映射到文档。 如果没有倒排索引的话,想找…...

【漏洞复现】时空智友ERP updater.uploadStudioFile接口处存在任意文件上传

0x01 产品简介 时空智友ERP是一款基于云计算和大数据技术的企业资源计划管理系统。该系统旨在帮助企业实现数字化转型,提高运营效率、降低成本、增强决策能力和竞争力,时空智友ERP系统涵盖了企业的各个业务领域,包括财务管理、供应链管理、生…...

[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差

题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 解析: minDiffInBST 方法是主要方法。创建一个 ArrayList 来存储树的节点值。inorderTrave…...

【Docker】可视化平台Portainer

文章目录 Portainer的特点Portainer的安装步骤注意事项 Docker的可视化工具Portainer是一个轻量级的容器管理平台,它为用户提供了一个直观的图形界面来管理Docker环境。以下是关于Portainer的详细介绍和安装步骤: Portainer的特点 轻量级:P…...

MySQL高级-MVCC-原理分析(RR级别)

文章目录 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView2、总结 1、RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView 而RR 是可重复读,在一个事务中&…...

压力测试Monkey命令参数和报告分析

目录 常用参数 -p <测试的包名列表> -v 显示日志详细程度 -s 伪随机数生成器的种子值 --throttle < 毫秒> --ignore-crashes 忽略崩溃 --ignore-timeouts 忽略超时 --monitor-native-crashes 监视本地崩溃代码 --ignore-security-exceptions 忽略安全异常 …...

C# Benchmark

创建控制台项目&#xff08;或修改现有项目的Main方法代码&#xff09;&#xff0c;Nget导入Benchmark0.13.12&#xff0c;创建测试类&#xff1a; public class StringBenchMark{int[] numbers;public StringBenchMark() {numbers Enumerable.Range(1, 20000).ToArray();}[Be…...

算法金 | 协方差、方差、标准差、协方差矩阵

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 抱个拳&#xff0c;送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...