当前位置: 首页 > news >正文

同声传译语音合成接口,分段预合成实现丝滑的衔接效果

背景:
在使用微信官方语音合成插件的时候遇到一个问题,textToSpeech这个api的内容限制在官网的文档上明明是1000个字节,也就是说能保证333个中文字符应该是没有问题的,但是也不知道为什么我这里仅仅传了150个中文字符就报错了,报错内容返回{“retcode”:-20003,“msg”:“text to speech inner server failed.”},查了一下是因为内容过长导致的错误。
解决办法:
事实与文档说明完全不符,这个没办法解决,就想了一个分割内容分段合成的办法,但是分段吧就会有一个问题,那就是如果每段文字合成语音后,播放,然后再合成,在播放,就会出现明显的停顿,一点都不丝滑,很难受,为了解决这个问题,想了一个预加载的办法,也就是预先合成一段段的音频文件,然后将这些音频文件存到一个数组里面,通过shift函数每次从数组取出一个这样就实现了不管多少文字内容,都能够非常丝滑的合成语音文件。
代码:

    data() {return {showAudioModal: false,textAyy: [],audioAyy: [],content: '超长的文本'};},onLoad(e) {this.audioContext =	uni.createInnerAudioContext();this.audioContext.onEnded(() => {if(this.audioAyy && this.audioAyy.length > 0){this.audioContext.src = this.audioAyy.shift()this.audioContext.play()}else{this.showAudioModal = false}})},methods: {async textToSpeech(){this.audioAyy = []this.textAyy = this.splitStringByLength(this.content,100,100)let flag = truefor (var i = 0,len = this.textAyy.length; i < len; i++) {if(i === 0){uni.showLoading({title: '语音加载中',mask: true})}await this.callTextToSpeech(this.textAyy[i]).then(res => {console.log(i)this.showAudioModal = trueif(flag){this.audioContext.src = res;this.audioContext.play();flag = false}else{this.audioAyy.push(res)}uni.hideLoading()}).catch(() => {})}if(flag){uni.hideLoading()uni.showToast({title:'语音合成失败'})}},callTextToSpeech(content){return new Promise((resolve,reject) => {this.$wcs.textToSpeech({lang: "zh_CN",tts: true,content,success: (res) => {console.log("succ tts", res.filename)resolve(res.filename)},fail: function(res) {console.log("fail tts", res)reject()}})})},splitStringByLength(str, maxSize, chunkSize) {const totalLength = str.length;if (totalLength <= maxSize) {return [str];}const chunks = [];let start = 0;while (start < totalLength) {let end = Math.min(start + chunkSize, totalLength);const chunk = str.substring(start, end);chunks.push(chunk);start = end;}return chunks;},
}

大致逻辑
通过async和await保证语音合成的有序性,第一段成功的语音直接播放,后续的放入数组,等音频播放结束事件触发后,自动从数组中获取资源,这样一来就实现了预合成的效果,达到了非常丝滑的效果

相关文章:

同声传译语音合成接口,分段预合成实现丝滑的衔接效果

背景&#xff1a; 在使用微信官方语音合成插件的时候遇到一个问题&#xff0c;textToSpeech这个api的内容限制在官网的文档上明明是1000个字节&#xff0c;也就是说能保证333个中文字符应该是没有问题的&#xff0c;但是也不知道为什么我这里仅仅传了150个中文字符就报错了&…...

数据结构——单链表详解(超详细)(1)

前言&#xff1a; 小编在近日学习了单链表的知识&#xff0c;为了加强记忆&#xff0c;于是诞生了这一篇文章&#xff0c;单链表是数据结构比较重要的知识&#xff0c;读者朋友们一定要去好好的学习&#xff01;这个可以说是比顺序表更好用的线性表&#xff0c;下面废话不多说&…...

在 Linux 上使用 lspci 命令查看 PCI 总线硬件设备信息

lspci 命令用于显示 Linux 系统上的设备和驱动程序 当在个人电脑或服务器上运行 Linux 时&#xff0c;有时需要识别该系统中的硬件。lspci 命令用于显示连接到 PCI 总线的所有设备&#xff0c;从而满足上述需求。该命令由 pciutils 包提供&#xff0c;可用于各种基于 Linux 和…...

python数据可视化(6)——绘制散点图

课程学习来源&#xff1a;b站up&#xff1a;【蚂蚁学python】 【课程链接&#xff1a;【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接&#xff1a;【链接】】 Python绘制散点图查看BMI与保险费的关系 散点图: 用两组数据构成多个坐标点&#xff0c;考察…...

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

​​​​​​​ 目录 一、引言 二、自动语音识别&#xff08;automatic-speech-recognition&#xff09; 2.1 概述 2.2 技术原理 2.2.1 whisper模型 2.2.2 Wav2vec 2.0模型 2.3 pipeline参数 2.3.1 pipeline对象实例化参数​​​​​​​ 2.3.2 pipeline对象使用参数…...

Mysql-错误处理: Found option without preceding group in config file

1、问题描述 安装MYSQL时&#xff0c;在cmd中“初始化”数据库时&#xff0c;输入命令&#xff1a; mysqld --initialize --consolecmd报错&#xff1a; D:\mysql-5.7.36-winx64\bin>mysql --initialize --console mysql: [ERROR] Found option without preceding group …...

[iOS]内存分区

[iOS]内存分区 文章目录 [iOS]内存分区五大分区栈区堆区全局区常量区代码区验证内存使用注意事项总结 函数栈堆栈溢出栈的作用 参考博客 在iOS中&#xff0c;内存主要分为栈区、堆区、全局区、常量区、代码区五大区域 还记得OC是C的超类 所以C的内存分区也是一样的 iOS系统中&a…...

sklearn基础教程:掌握机器学习入门的钥匙

sklearn基础教程&#xff1a;掌握机器学习入门的钥匙 在数据科学和机器学习的广阔领域中&#xff0c;scikit-learn&#xff08;简称sklearn&#xff09;无疑是最受欢迎且功能强大的库之一。它提供了简单而高效的数据挖掘和数据分析工具&#xff0c;让研究人员、数据科学家以及…...

【unity实战】使用unity制作一个红点系统

前言 注意&#xff0c;本文是本人的学习笔记记录&#xff0c;这里先记录基本的代码&#xff0c;后面用到了再回来进行实现和整理 素材 https://assetstore.unity.com/packages/2d/gui/icons/2d-simple-ui-pack-218050 框架&#xff1a; RedPointSystem.cs using System.…...

开发指南046-机构树控件

为了简化编程&#xff0c;平台封装了很多前端组件。机构树就是常用的组件之一。 基本用法&#xff1a; import QlmOrgTree from /qlmcomponents/tree/QlmOrgTree <QlmOrgTree></QlmOrgTree> 功能&#xff1a; 根据权限和控制参数显示机构树。机构树数据来源于核…...

SpringBatch文件读写ItemWriter,ItemReader使用详解

SpringBatch文件读写ItemWriter&#xff0c;ItemReader使用详解 1. ItemReaders 和 ItemWriters1.1. ItemReader1.2. ItemWriter1.3. ItemProcessor 2.FlatFileItemReader 和 FlatFileItemWriter2.1.平面文件2.1.1. FieldSet 2.2. FlatFileItemReader2.3. FlatFileItemWriter 3…...

如何评估AI模型:评估指标的分类、方法及案例解析

如何评估AI模型&#xff1a;评估指标的分类、方法及案例解析 引言第一部分&#xff1a;评估指标的分类第二部分&#xff1a;评估指标的数学基础第三部分&#xff1a;评估指标的选择与应用第四部分&#xff1a;评估指标的局限性第五部分&#xff1a;案例研究第六部分&#xff1a…...

程序员学CFA——经济学(七)

经济学&#xff08;七&#xff09; 汇率外汇市场外汇市场的功能外汇市场的参与者卖方买方 汇率的计算汇率报价基础货币与计价货币直接报价与间接报价外汇报价习惯 名义汇率和实际汇率货币的升值与贬值交叉汇率计算即期汇率与远期汇率即期汇率与远期汇率的概念远期升水/贴水远期…...

imx335帧率改到10fps的方法

验证: imx335.c驱动默认的帧率是30fps,要将 IMX335 的帧率更改为 10fps,需要调整与帧率相关的参数。FPS(frames per second,每秒帧数)通常由 sensor 的曝光时间(exposure time)和垂直总时间(VTS,Vertical Total Size)共同决定。VTS 定义了 sensor 完成一帧图像采集…...

Large Language Model系列之二:Transformers和预训练语言模型

Large Language Model系列之二&#xff1a;Transformers和预训练语言模型 1 Transformer模型 Transformer模型是一种基于自注意力机制的深度学习模型&#xff0c;它最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出&#xff0c;主要用于机器翻译任务。随…...

java后端项目启动失败,解决端口被占用问题

报错信息&#xff1a; Web server failed to start . Port 8020 was already in use. 1、查看端口号 netstat -ano | findstr 端口号 2、终止进程 taskkill /F /PID 进程ID 举例&#xff1a;关闭8020端口...

PostgreSQL安装/卸载(CentOS、Windows)

说明&#xff1a;PostgreSQL与MySQL一样&#xff0c;是一款开源免费的数据库技术&#xff0c;官方口号&#xff1a;The World’s Most Advanced Open Source Relational Database.&#xff08;世界上最先进的开源关系数据库&#xff09;&#xff0c;本文介绍如何在Windows、Cen…...

OutOfMemoryError异常OOM排查

目录 参考工具MAT(Memory Analyzer)一、产生原因二、测试堆溢出 java.lang.OutOfMemoryError: Java heap space测试代码运行手动导出dump文件mat排查打开dump文件查看Leak Suspects(泄露疑点)参考 【JVM】八、OOM异常的模拟 MAT工具分析Dump文件(大对象定位) 用arthas排…...

【Python】Arcpy将excel点生成shp文件

根据excel点经纬度数据&#xff0c;生成shp&#xff0c;参考博主的代码&#xff0c;进行了修改&#xff0c;在属性表中保留excel中的数据。 参考资料&#xff1a;http://t.csdnimg.cn/OleyT 注意修改以下两句中的数字。 latitude float(row[1]) longitude float(row[2])imp…...

torch之从.datasets.CIFAR10解压出训练与测试图片 (附带网盘链接)

前言 从官网上下载的是长这个样子的 想看图片&#xff0c;咋办咧&#xff0c;看下面代码 import torch import torchvision import numpy as np import os import cv2 batch_size 50transform_predict torchvision.transforms.Compose([torchvision.transforms.ToTensor(),…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...