当前位置: 首页 > news >正文

LangChain之网络爬虫

网络爬虫

概述

网络爬虫是LangChain中的一项关键功能,允许用户自动从互联网上收集信息。这项功能对于研究和数据收集尤其有价值,因为它可以大幅减少手动搜索和信息整理的工作量。

从网络收集内容有几个主要组件:

Search搜索:使用工具如GoogleSearchAPIWrapper查询并获取URL列表。Loading加载:将URL转换为HTML内容,使用工具如AsyncHtmlLoader或AsyncChromiumLoader。Transforming转换:将HTML内容转换为格式化文本,使用HTML2Text或BeautifulSoup等工具。	

准备

安装相关依赖库

pip install langchain-openai langchain playwright beautifulsoup4 

设置OpenAI的BASE_URL、API_Key

import osos.environ["OPENAI_BASE_URL"] = "https://xxx.com/v1"
os.environ["OPENAI_API_KEY"] = "sk-dtRXRfYzHDZQT8Cr2874xxxx13F97bF24b7a"

加载器

使用Chromium的无头实例爬取HTML内容,无头模式意味着浏览器在没有图形用户界面的情况下运行,这通常用于网页抓取。

主要有2种方式:

方式加载器描述
Python的asyncio库AsyncHtmlLoader使用该库aiohttp发出异步 HTTP 请求,适合更简单、轻量级的抓取。
PlaywrightAsyncChromiumLoader使用 Playwright 启动 Chromium 实例,该实例可以处理 JavaScript 渲染和更复杂的 Web 交互。

注意:

Chromium 是 Playwright 支持的浏览器之一,Playwright 是一个用于控制浏览器自动化的库。

from langchain_community.document_loaders import AsyncChromiumLoader# 加载HTML
loader = AsyncChromiumLoader(["https://www.langchain.com"])
html = loader.load()

转换

html2text

html2text 是一个 Python 包,它将 HTML 页面转换为干净、易于阅读的纯文本,无需任何特定的标签操作。它最适合目标是提取人类可读文本而不需要操作特定HTML元素的场景。

要使用html2text,首先需要额外安装

pip install html2text

使用示例如下:

from langchain_community.document_loaders import AsyncChromiumLoader
from langchain_community.document_transformers import Html2TextTransformer# 加载HTML
loader = AsyncChromiumLoader(["https://www.langchain.com"])
html = loader.load()# # 转换
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(html)# 结果
res = docs_transformed[0].page_content[0:500]
print(res)

Beautiful Soup

Beautiful Soup 提供对 HTML 内容更细粒度的控制,支持特定标签的提取、删除和内容清理。它适合根据需要提取特定信息并清理 HTML 内容的情况。

要使用Beautiful Soup,首先也是需要安装

pip install beautifulsoup4

使用示例如下

from langchain_community.document_loaders import AsyncChromiumLoader
from langchain_community.document_transformers import BeautifulSoupTransformer
# 加载HTML
loader = AsyncChromiumLoader(["https://www.langchain.com"])
html = loader.load()# # 转换
bs_transformer = BeautifulSoupTransformer()
docs_transformed = bs_transformer.transform_documents(html, tags_to_extract=["h1"])# 结果
res = docs_transformed[0].page_content[0:500]
print(res)

从HTML内容中爬取文本内容标签说明

<p>:段落标签。在HTML中定义段落,并用于组合相关句子或短语<li>:列表项标签。用于有序(<ol>)和无序(<ul>)列表中,定义列表中的各个项<div>:分区标签。块级元素,用于组合其他内联或块级元素<a>:锚点标签。用于定义超链接<span>:内联容器,用于标记文本的一部分或文档的一部分

提取

定义模式、架构​来指定想要提取的数据类型。键名很重要,因为它告诉 LLM想要什么样的信息。

# 定义模式、架构来指定想要提取的数据类型
schema = {"properties": {"all_tutorial_category": {"type": "string"},"category_item": {"type": "string"},},"required": ["all_tutorial_category"],
}

提取网页内容的爬虫实现如下

from langchain_community.document_loaders import AsyncChromiumLoader
from langchain_community.document_transformers import BeautifulSoupTransformer
from langchain_openai import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitterllm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
from langchain.chains import create_extraction_chain# 定义模式、架构来指定想要提取的数据类型
schema = {"properties": {"category_item": {"type": "string"},},"required": ["category_item"],
}# 执行提取链
def extract(content: str, schema: dict):return create_extraction_chain(schema=schema, llm=llm).invoke(content)# 使用AsyncChromiumLoader加载器
def scrape_with_playwright(urls, schema):loader = AsyncChromiumLoader(urls)docs = loader.load()bs_transformer = BeautifulSoupTransformer()# 限制爬取指定标签内容docs_transformed = bs_transformer.transform_documents(docs, tags_to_extract=["h4"])print("使用 LLM 提取内容")# 获取网站的前 1000 个token文本splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=1000, chunk_overlap=0)splits = splitter.split_documents(docs_transformed)# 拆分处理extracted_content = extract(schema=schema, content=splits[0].page_content)# 打印内容# pprint.pprint(extracted_content)return extracted_contentif __name__ == '__main__':urls = ["https://www.runoob.com/"]extracted_content = scrape_with_playwright(urls, schema=schema)print(extracted_content)

执行部分日志如下,可以看出数据提前成功

text': [{'category_item': 'HTML'}, {'category_item': 'CSS'}, {'category_item': 'Bootstrap'},
{'category_item': 'Font Awesome'}, {'category_item': 'Foundation'}, {'category_item': 'JavaScript'},
{'category_item': 'HTML DOM'}, {'category_item': 'jQuery'}, ........{'category_item': 'Markdown'}, {'category_item': 'HTTP'}, 
{'category_item': 'TCP/IP'}, {'category_item': 'W3C'}]}

自动化​

可以使用检索器(如WebResearchRetriever)来自动化网络研究过程,以便使用搜索内容回答特定问题。
在这里插入图片描述

借助Google的Custom Search JSON API,以程序化地检索和显示来自可编程搜索引擎的搜索结果。,具体阅读文档创建GOOGLE_API_KEY和GOOGLE_CSE_ID

自动化爬取实现如下

from langchain.retrievers.web_research import WebResearchRetriever
from langchain_chroma import Chroma
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
import logging
from langchain.chains import RetrievalQAWithSourcesChainimport osos.environ["GOOGLE_API_KEY"] = 'AIzaSyBNrdu0_xxxxx-Vk2nDs'
os.environ["GOOGLE_CSE_ID"] = '405fxxxxxx64ca1'# 向量存储:使用 Chroma 客户端进行初始化
vectorstore = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory="./chroma_db_oai"
)# LLM
llm = ChatOpenAI(temperature=0)# 搜索
search = GoogleSearchAPIWrapper()"""
使用上述工具初始化检索器:使用 LLM 生成多个相关搜索查询(一次 LLM 调用)
对每个查询执行搜索
选择每个查询的前 K 个链接(并行多个搜索调用)
从所有选定的链接加载信息(并行抓取页面)
将这些文档索引到矢量存储中
为每个原始生成的搜索查询查找最相关的文档
"""
web_research_retriever = WebResearchRetriever.from_llm(vectorstore=vectorstore, llm=llm, search=search
)# 设置日志
logging.basicConfig()
logging.getLogger("langchain.retrievers.web_research").setLevel(logging.INFO)# 执行
user_input = "菜鸟教程网站有那些教程分类?"
qa_chain = RetrievalQAWithSourcesChain.from_chain_type(llm, retriever=web_research_retriever
)
result = qa_chain.invoke({"question": user_input})
print(result)

输出结果如下
在这里插入图片描述

相关文章:

LangChain之网络爬虫

网络爬虫 概述 网络爬虫是LangChain中的一项关键功能&#xff0c;允许用户自动从互联网上收集信息。这项功能对于研究和数据收集尤其有价值&#xff0c;因为它可以大幅减少手动搜索和信息整理的工作量。 从网络收集内容有几个主要组件&#xff1a; Search搜索&#xff1a;使用…...

VueRouter 相关信息

VueRouter 是Vue.js官方路由插件&#xff0c;与Vue.js深度集成&#xff0c;用于构建单页面应用。构建的单页面是基于路由和组件&#xff0c;路由设定访问路径&#xff0c;将路径与组件进行映射。VueRouter有两中模式 &#xff1a;hash 和 history &#xff0c;默认是hash模式。…...

[环境配置]Pycharm:Failed to start [PowerShell.exe]

解决方法&#xff0c;点Local旁边的 号&#xff0c;点击Command Prompt&#xff0c;即可在Pycharm中呼出控制台。 如果要修改Command Prompt的启动时访问的cmd.exe的路径&#xff0c;可以去Settings→Tools→Terminal中&#xff0c;修改Shell Path实现&#xff0c;改为cmd.exe…...

搜狗爬虫(www.sogou.com)IP及UA,真实采集数据

一、数据来源&#xff1a; 1、这批搜狗爬虫&#xff08;www.sogou.com&#xff09;IP来源于尚贤达猎头网站采集数据&#xff1b; ​ 2、数据采集时间段&#xff1a;2023年10月-2024年7月&#xff1b; 3、判断标准&#xff1a;主要根据用户代理是否包含“www.sogou.com”和IP核实…...

北京青蓝智慧科技ITSS服务经理:长安链ChainBridge“链桥”问世 加速国家级区块链网络互联互通

8月5日&#xff0c;据国家区块链技术创新中心消息&#xff0c;我国首个完全自主控制的区块链软硬件技术系统——长安链&#xff0c;正式推出了全场景技术平台ChainBridge“链桥”。 此平台能够支持所有异构和同构的区块链进行协作&#xff0c;满足跨领域、跨地域、跨行业及跨层…...

音视频入门基础:WAV专题(5)——FFmpeg源码中解码WAV Header的实现

音视频入门基础&#xff1a;WAV专题系列文章&#xff1a; 音视频入门基础&#xff1a;WAV专题&#xff08;1&#xff09;——使用FFmpeg命令生成WAV音频文件 音视频入门基础&#xff1a;WAV专题&#xff08;2&#xff09;——WAV格式简介 音视频入门基础&#xff1a;WAV专题…...

爬虫:csv存储:写入和读取

目录 csv写入 csv读取 csv写入 import csv# data [ # (tf, 20, 180), # (dl, 20, 170), # (hc, 18, 190) # ] # header (姓名,年龄,身高) # # # csv写入数据会默认写一行隔一行 newline就是让它不要有空行 # with open(text.csv,w,encodingutf8,newline) as f:…...

Opencv-绘制几何图形

1. 绘制圆形 1.1 circle()函数原型 void cv::circle(InputOutputArray img, Point center, int radius, const Scalar & color, int thickness 1, int lineType LINE_8, int shift 0 ) img&#xff1a;需要绘制圆形的图像。 center&#xff1a;圆形的圆心位置坐标。 …...

ElasticSearch安装与集群部署

ElasticSearch安装与集群部署 很多小伙伴第一次接触ElasticSearch的时候是一脸愁容,这个东西他怎么用啊,不知道从哪里安装,那我们今天就着重从哪里下载?怎么下载?怎么安装?来研究一下吧! windows下载安装ElasticSearch 下载地址&#xff1a;https://www.elastic.co/cn/do…...

盘点12款企业常用源代码加密软件,源代码防泄密很重要!

在当今的商业环境中&#xff0c;源代码作为企业的核心资产之一&#xff0c;其安全性不容忽视。源代码的泄露可能导致企业丧失竞争优势、面临法律诉讼甚至经济损失。因此&#xff0c;选择合适的源代码加密软件成为企业保护知识产权和核心技术的关键步骤。 1. 安秉源代码加密软件…...

文件上传和下载

要想实现文件上传和下载&#xff0c;其实只需要下述代码即可&#xff1a; 文件上传和下载 import cn.hutool.core.io.FileUtil; import cn.hutool.core.util.StrUtil; import com.example.common.Result; import org.springframework.web.bind.annotation.*; import org.sprin…...

机械学习—零基础学习日志(高数22——泰勒公式理解深化)

核心思想&#xff1a;函数逼近 在泰勒的年代&#xff0c;如果想算出e的0.001次方&#xff0c;这是很难计算的。那为了能计算这样的数字&#xff0c;可以尝试逼近的思想。 但是函数又不能所有地方都相等&#xff0c;那退而求其次&#xff0c;只要在一个极小的范围&#xff0c;…...

Java | Leetcode Java题解之第318题最大单词长度乘积

题目&#xff1a; 题解&#xff1a; class Solution {public int maxProduct(String[] words) {Map<Integer, Integer> map new HashMap<Integer, Integer>();int length words.length;for (int i 0; i < length; i) {int mask 0;String word words[i];in…...

科普文:JUC系列之多线程门闩同步器Condition的使用和源码解读

一、概述 条件锁就是指在获取锁之后发现当前业务场景自己无法处理&#xff0c;而需要等待某个条件的出现才可以继续处理时使用的一种锁。 比如&#xff0c;在阻塞队列中&#xff0c;当队列中没有元素的时候是无法弹出一个元素的&#xff0c;这时候就需要阻塞在条件notEmpty上…...

Stable Diffusion绘画 | 图生图-基础使用介绍—提示词反推

按默认设置直接出图 拖入图片值图生图框中&#xff0c;保持默认设置&#xff0c;直接生成图片&#xff0c;出图效果如下&#xff1a; 因为重绘幅度0.7&#xff0c;所出图片与原图有差异&#xff0c;但整体的框架构图与颜色与原图类似。 输入关键词后出图 在正向提示词中输入…...

正点原子imx6ull-mini-Linux驱动之Linux SPI 驱动实验(22)

跟上一章一样&#xff0c;其实这些设备驱动&#xff0c;无非就是传感器对应寄存器的读写。而这个读写是建立在各种通信协议上的&#xff0c;比如上一章的i2c&#xff0c;我们做了什么呢&#xff0c;就是把设备注册成一个i2c平台驱动&#xff0c;这个i2c驱动怎么搞的呢&#xff…...

TypeScript 函数

函数是JavaScript应用程序的基础。 它帮助你实现抽象层&#xff0c;模拟类&#xff0c;信息隐藏和模块。 在TypeScript里&#xff0c;虽然已经支持类&#xff0c;命名空间和模块&#xff0c;但函数仍然是主要的定义 行为 的地方。 TypeScript为JavaScript函数添加了额外的功能&…...

C++ : namespace,输入与输出,函数重载,缺省参数

一&#xff0c;命名空间(namespace) 1.1命名空间的作用与定义 我们在学习c的过程中&#xff0c;经常会碰到命名冲突的情况。就拿我们在c语言中的一个string函数来说吧&#xff1a; int strncat 0; int main() {printf("%d", strncat);return 0; } 当我们运行之后&…...

目标检测 | yolov1 原理和介绍

1. 简介 论文链接&#xff1a;https://arxiv.org/abs/1506.02640 时间&#xff1a;2015年 作者&#xff1a;Joseph Redmon 代码参考&#xff1a;https://github.com/abeardear/pytorch-YOLO-v1 yolo属于one-stage算法&#xff0c;仅仅使用一个CNN网络直接预测不同目标的类别与…...

excel中有些以文本格式存储的数值如何批量转换为数字

一、背景 1.1 文本格式存储的数值特点 在平时工作中有时候会从别地方导出来表格&#xff0c;表格中有些数值是以文本格式存储的&#xff08;特点&#xff1a;单元格的左上角有个绿色的小标&#xff09;。 1.2 文本格式存储的数值在排序时不符合预期 当我们需要进行排序的时候…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...