当前位置: 首页 > news >正文

pycv实时目标检测快速实现

使用python_cv实现目标实时检测

  • python 安装依赖
  • 核心代码快速使用
  • 实现结果展示
  • enjoy

python 安装依赖

opencv_python==4.7.0.72
pandas==1.5.3
tensorflow==2.11.0
tensorflow_hub==0.13.0
tensorflow_intel==2.11.0
numpy==1.23.5

核心代码快速使用

# 使用了TensorFlow Hub和OpenCV库来实现实时对象检测
# tensorflow_hub:用于加载预训练的模型。
# cv2:OpenCV库,用于图像处理和视频流操作。
# tensorflow:深度学习框架。
# pandas:数据处理库。import tensorflow_hub as hub
import cv2
# import numpy
import tensorflow as tf
import pandas as pd# 加载了EfficientDet Lite2检测模型,并读取了标签文件:# 模型加载方式被注释掉,直接通过本地路径加载模型。
# 从CSV文件中读取标签,以ID作为索引,获取对象名称。# Carregar modelos
# detector = hub.load("https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1")
detector = hub.load("efficientdet_lite2_detection_1")
labels = pd.read_csv('labels.csv', sep=';', index_col='ID')
labels = labels['OBJECT (2017 REL.)']# 初始化摄像头捕获,0表示默认摄像头。
cap = cv2.VideoCapture(0)# 定义输入图像的宽度和高度。width = 512
height = 512# 接下来是一个循环,用于实时处理视频流:
while (True):# Capture frame-by-frame# 在循环中,逐帧捕获视频并调整尺寸以匹配模型输入。ret, frame = cap.read()# Resize to respect the input_shapeinp = cv2.resize(frame, (width, height))# 将BGR格式的图像转换为RGB格式,这是因为大多数深度学习模型接受RGB输入。# Convert img to RGBrgb = cv2.cvtColor(inp, cv2.COLOR_BGR2RGB)# Is optional but i recommend (float convertion and convert img to tensor image)rgb_tensor = tf.convert_to_tensor(rgb, dtype=tf.uint8)# 将图像转换为TensorFlow张量,类型为uint8。# Add dims to rgb_tensorrgb_tensor = tf.expand_dims(rgb_tensor, 0)# 增加一个维度以匹配模型输入要求。boxes, scores, classes, num_detections = detector(rgb_tensor)pred_labels = classes.numpy().astype('int')[0]pred_labels = [labels[i] for i in pred_labels]pred_boxes = boxes.numpy()[0].astype('int')pred_scores = scores.numpy()[0]# 将预测结果转换为可处理的格式,包括标签、边界框和得分。#循环遍历每个检测到的对象,绘制边界框和标签,只显示得分高于0.5的对象。# loop throughout the faces detected and place a box around itfor score, (ymin, xmin, ymax, xmax), label in zip(pred_scores, pred_boxes, pred_labels):if score < 0.5:continuescore_txt = f'{100 * round(score,0)}'img_boxes = cv2.rectangle(rgb, (xmin, ymax), (xmax, ymin), (0,  255, 0), 1)font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(img_boxes, label, (xmin, ymax-10), font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)cv2.putText(img_boxes, score_txt, (xmax, ymax-10), font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)# 显示处理后的图像,并在按下'q'键时退出循环。# Display the resulting framecv2.imshow('black and white', img_boxes)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头资源并关闭所有OpenCV窗口,确保程序正常结束。
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()

实现结果展示

enjoy

github:liveCamer

相关文章:

pycv实时目标检测快速实现

使用python_cv实现目标实时检测 python 安装依赖核心代码快速使用实现结果展示enjoy python 安装依赖 opencv_python4.7.0.72 pandas1.5.3 tensorflow2.11.0 tensorflow_hub0.13.0 tensorflow_intel2.11.0 numpy1.23.5核心代码快速使用 # 使用了TensorFlow Hub和OpenCV库来实…...

记录下如何让字体在div内 自动换行 上下居中

div内样式 display: flex; // flex布局 justify-content: center; // 上下居中 align-items: center; // 左右居中 overflow-wrap: break-word; // 允许字体换行 &#xff08;若行内的单词无法放下则换行&#xff09; word-break: break-all; // 强制文本在任意字符间进…...

Shell篇之编写MySQL启动脚本

Shell篇之编写MySQL启动脚本 1. 脚本内容 vim mysql_ctl.sh#!/bin/bashmysql_port3306 mysql_username"root" mysql_password"molinker" mysql_conf"/opt/lanmp/mysql/etc/my.cnf" mysql_sock"/opt/lanmp/mysql/var/mysql.sock"func…...

supermap Iclient3d for cesium加载地形并夸大地形

先看效果图 这是没有夸张之前的都江堰 这是夸大五倍后的都江堰 下面展示代码 主要就是加载supermaponline的skt地形然后夸大 <template><div class"PartOneBox"><div id"cesiumContainer"></div></div> </template>…...

一文解读OLAP的工具和应用软件

OLAP&#xff08;OnlineAnalyticalProcessing&#xff09;是一种用于快速分析大规模、多维度数据的方法。OLAP工具和应用软件则是帮助人们进行OLAP分析的重要工具。本文将介绍几种常见的OLAP工具和应用软件&#xff0c;并探讨它们在数据分析中的作用。 一 OLAP工具的分类 在选…...

xml重点笔记(尚学堂 3h)

XML:可扩展标记语言 主要内容(了解即可) 1.XML介绍 2.DTD 3.XSD 4.DOM解析 6.SAX解析 学习目标 一. XML介绍 1.简介 XML(Extensible Markup Language) 可扩展标记语言&#xff0c;严格区分大小写 2.XML和HTML XML是用来传输和存储数据的。 XML多用在框架的配置文件…...

爬虫代理API的全面解析:让数据抓取更高效

在大数据时代&#xff0c;网络爬虫已经成为收集和分析数据的重要工具。然而&#xff0c;频繁的请求会导致IP被封禁&#xff0c;这时候爬虫代理API就显得尤为重要。本文将详细介绍爬虫代理API的作用、优势及如何使用&#xff0c;帮助你更高效地进行数据抓取。 什么是爬虫代理AP…...

PCL 点云中的植被信息提取(C++详细过程版)

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接,首发于:2024年9月18日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。 一、算法原理 1、原理概述 点云具有丰富的色彩信息,可以与植被指数结合使…...

requests-html的具体使用方法有哪些?

‌requests-html是一个功能强大的Python库&#xff0c;用于发送HTTP请求和解析HTML内容。它的使用方法包括安装库、基本使用、发送带有参数的请求、图片抓取实战案例、解析网页内容、执行JavaScript代码、使用CSS选择器来查找元素、继续跟踪链接并获取内容等。‌ ‌安装request…...

YOLOv9改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核

一、本文介绍 本文记录的是利用AKConv优化YOLOv9的目标检测网络模型。标准卷积操作的卷积运算局限于局部窗口&#xff0c;无法捕获其他位置的信息&#xff0c;且采样形状固定&#xff0c;无法适应不同数据集和位置中目标形状的变化。而AKConv旨在为卷积核提供任意数量的参数和…...

图神经网络池化方法

图神经网络池化方法 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 图神经网络池化方法前言一、扁平图池化二、分层图池化1.节点聚类池化2.节点丢弃池化 参考文献 前言 图池化操作根据其池化策略的差异&#xff…...

小琳AI课堂:确保大语言模型安全的八大策略--从数据隐私到用户教育

大家好&#xff0c;这里是小琳AI课堂。今天我们深入探讨如何保证大语言模型的安全&#xff0c;这可是关系到我们每个人哦&#xff01;&#x1f510; 首先&#xff0c;我们要明白&#xff0c;保证大语言模型的安全&#xff0c;需要从多个方面入手&#xff0c;确保模型在技术、法…...

Python 数学建模——高斯核密度估计

文章目录 前言原理代码实例scipy 实现seaborn 实现 前言 高斯核密度估计本是一种机器学习算法&#xff0c;在数学建模中也可以发挥作用。本文主要讨论用它来拟合变量的概率密度&#xff0c;获得概率密度函数 f ( x ) f(x) f(x)。 原理 已知一个连续型随机变量 X X X 的一系列…...

Flink+Spark相关记录

FlinkSpark相关记录 FlinkSQL Flink Streaming的一些点覆写RichSource、RichSink、RichMap 1.Source自动负载均衡&#xff0c;CDC源端加入一个全局调控的节点监控流量流速 2.Sink并发写入 3.Map与Iterator与增量迭代等用法关于Checkpoint几个用法 1.提交Commit至目的端数据库 2…...

2023 hnust 湖科大 毕业实习 报告+实习鉴定表

2023 hnust 湖科大 毕业实习 报告实习鉴定表 岗位 IT公司机房运维 实习报告 实习鉴定表 常见疑问 hnust 湖科大 毕业实习常见问题30问&#xff08;2021 年7月&#xff0c;V0.9&#xff09;-CSDN博客时间&#xff1a;大四开学第三四周毕业实习23年是企业&#xff08;黑马&am…...

ConflictingBeanDefinitionException | 运行SpringBoot项目时报错bean定义冲突解决方案

具体报错&#xff1a; Caused by: org.springframework.context.annotation.ConflictingBeanDefinitionException: Annotation-specified bean name ‘CommissionMapperImpl’ for bean class [com.xxx.mapper.carrier.CommissionMapperImpl] conflicts with existing, non-co…...

如何切换淘宝最新镜像源(npm)【2024版】

在使用 Node.js 和 npm 进行开发时&#xff0c;大家通常会遇到 npm 源速度较慢的问题。特别是当你需要安装大量依赖时&#xff0c;npm 官方源的速度可能不尽如人意。幸运的是&#xff0c;淘宝提供了一个更快速的 npm 镜像源&#xff0c;可以让你更快地下载和安装包。本文将介绍…...

YoloV10改进策略:Block改进|PromptIR(NIPS‘2023)|轻量高效,即插即用|(适用于分类、分割、检测等多种场景)

文章目录 摘要代码详解如何在自己的论文中描述改进方法测试结果总结摘要 本文使用PromptIR框架中的PGM模块来改进YoloV10。PGM(Prompt Generation Module)模块是PromptIR框架中的一个重要组成部分,主要负责生成输入条件化的提示(prompts)。这些提示是一组可学习的参数,它…...

使用rust自制操作系统内核

一、系统简介 本操作系统是一个使用rust语言实现&#xff0c;基于32位的x86CPU的分时操作系统。 项目地址&#xff08;求star&#xff09;&#xff1a;GitHub - CaoGaorong/os-in-rust: 使用rust实现一个操作系统内核 详细文档&#xff1a;自制操作系统 语雀 1. 项目特性 …...

Flink难点和高阶面试题:Flink的状态管理机制如何保证数据处理的准确性和完整性

1 Flink状态管理机制核心要素 1.1 内置状态后端 在Apache Flink中,状态管理机制是确保数据处理准确性与完整性的关键环节。其核心在于灵活且高效的状态后端,这些后端负责在分布式环境中安全地存储和访问状态数据。Flink提供了多种内置状态后端,其中RocksDB和内存状态后端最…...

【激励广告带来的广告收入与用户留存率的双重提升】

激励广告带来的广告收入与用户留存率的双重提升 ) 随着移动应用市场的竞争加剧&#xff0c;如何通过广告变现成为众多开发者关注的焦点。其中&#xff0c;激励广告&#xff08;Rewarded Ads&#xff09;凭借其用户友好、互动性强等特点&#xff0c;逐渐成为开发者的首选。那些…...

指针和引用;内联函数和普通函数

1. 指针和引用 1.1 定义和性质区别 指针是一个变量&#xff0c;只不过这个变量存储的是一个地址&#xff0c;指向内存的一个存储单元&#xff1b;而引用跟原来的变量实质上是同一个东西&#xff0c;只不过是原变量的一个别名而已。可以有const指针&#xff0c;常量指针可以改…...

简单题67.二进制求和 (java)20240919

题目描述&#xff1a; Java&#xff1a; class Solution {public String addBinary(String a, String b) {StringBuilder result new StringBuilder();int i a.length()-1;int j b.length()-1;int carry 0; //记录进位信息while(i>0 || j>0 || carry!0){int sum ca…...

DDD的主要流程

DDD 开发流程分为模型的建立和模型的实现两大部分&#xff0c;接下来是具体的流程讲解以及流程图。 1. 模型的建立 捕获行为需求&#xff1a;在这一阶段&#xff0c;团队要识别系统中需要完成的任务、操作流程、功能需求以及每个功能由谁操作、会产生什么结果。我们可以通过 …...

linux驱动开发-设备树

设备树的历史背景 背景&#xff1a; 在早期的嵌入式系统中&#xff0c;硬件配置信息通常硬编码在内核源码中&#xff0c;这导致了内核代码的冗长和难以维护。 为了解决这个问题&#xff0c;设备树&#xff08;Device Tree&#xff09;被引入&#xff0c;使得硬件描述与内核代…...

数据结构——二叉树堆的专题

1.堆的概念及结构 如果有一个关键码的集合K {K0 &#xff0c;K1 &#xff0c;K2 &#xff0c;K3…&#xff0c;K(N-1) }&#xff0c;把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中&#xff0c;并满足&#xff1a;Ki < K2*i1且 Ki<K2*i2 ) i 0&#…...

【C语言零基础入门篇 - 7】:拆解函数的奥秘:定义、声明、变量,传递须知,嵌套玩转,递归惊艳

文章目录 函数函数的定义与声明局部变量和全局变量、静态变量静态变量和动态变量函数的值传递函数参数的地址传值 函数的嵌套使用函数的递归调用 函数 函数的定义与声明 函数的概念&#xff1a;函数是C语言项目的基本组成单位。实现一个功能可以封装一个函数来实现。定义函数的…...

ClickHouse在AI领域的结合应用

文章目录 引言1.1 人工智能与大数据的融合1.2 ClickHouse在大数据平台中的地位2.1 BI与AI的融合从传统BI到智能BIAI赋能BI融合的优势实际应用案例 2.2 异构数据处理的重要性数据多样性的挑战异构数据处理的需求技术实现实际应用案例 2.3 向量检索与AIOps技术向量检索的背景AIOp…...

git push出错Push cannot contain secrets

报错原因&#xff1a; 因为你的代码里面包含了github token明文信息&#xff0c;github担心你的token会泄漏&#xff0c;所以就不允许你推送这些内容。 解决办法&#xff1a; 需要先把代码里面的github token信息删除掉&#xff0c;并且删掉之前的历史提交&#xff0c;只要包…...

OpenAI 的最强模型 o1 的“护城河”失守?谷歌 DeepMind 早已揭示相同原理

发布不到一周&#xff0c;OpenAI 的最新模型 o1 的“护城河”似乎已经失守。 近日&#xff0c;有人发现谷歌 DeepMind 早在今年 8 月发表的一篇论文&#xff0c;揭示了与 o1 模型极其相似的工作原理。 这项研究指出&#xff0c;在模型推理过程中增加测试时的计算量&#xff0c…...