pycv实时目标检测快速实现
使用python_cv实现目标实时检测
- python 安装依赖
- 核心代码快速使用
- 实现结果展示
- enjoy
python 安装依赖
opencv_python==4.7.0.72
pandas==1.5.3
tensorflow==2.11.0
tensorflow_hub==0.13.0
tensorflow_intel==2.11.0
numpy==1.23.5
核心代码快速使用
# 使用了TensorFlow Hub和OpenCV库来实现实时对象检测
# tensorflow_hub:用于加载预训练的模型。
# cv2:OpenCV库,用于图像处理和视频流操作。
# tensorflow:深度学习框架。
# pandas:数据处理库。import tensorflow_hub as hub
import cv2
# import numpy
import tensorflow as tf
import pandas as pd# 加载了EfficientDet Lite2检测模型,并读取了标签文件:# 模型加载方式被注释掉,直接通过本地路径加载模型。
# 从CSV文件中读取标签,以ID作为索引,获取对象名称。# Carregar modelos
# detector = hub.load("https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1")
detector = hub.load("efficientdet_lite2_detection_1")
labels = pd.read_csv('labels.csv', sep=';', index_col='ID')
labels = labels['OBJECT (2017 REL.)']# 初始化摄像头捕获,0表示默认摄像头。
cap = cv2.VideoCapture(0)# 定义输入图像的宽度和高度。width = 512
height = 512# 接下来是一个循环,用于实时处理视频流:
while (True):# Capture frame-by-frame# 在循环中,逐帧捕获视频并调整尺寸以匹配模型输入。ret, frame = cap.read()# Resize to respect the input_shapeinp = cv2.resize(frame, (width, height))# 将BGR格式的图像转换为RGB格式,这是因为大多数深度学习模型接受RGB输入。# Convert img to RGBrgb = cv2.cvtColor(inp, cv2.COLOR_BGR2RGB)# Is optional but i recommend (float convertion and convert img to tensor image)rgb_tensor = tf.convert_to_tensor(rgb, dtype=tf.uint8)# 将图像转换为TensorFlow张量,类型为uint8。# Add dims to rgb_tensorrgb_tensor = tf.expand_dims(rgb_tensor, 0)# 增加一个维度以匹配模型输入要求。boxes, scores, classes, num_detections = detector(rgb_tensor)pred_labels = classes.numpy().astype('int')[0]pred_labels = [labels[i] for i in pred_labels]pred_boxes = boxes.numpy()[0].astype('int')pred_scores = scores.numpy()[0]# 将预测结果转换为可处理的格式,包括标签、边界框和得分。#循环遍历每个检测到的对象,绘制边界框和标签,只显示得分高于0.5的对象。# loop throughout the faces detected and place a box around itfor score, (ymin, xmin, ymax, xmax), label in zip(pred_scores, pred_boxes, pred_labels):if score < 0.5:continuescore_txt = f'{100 * round(score,0)}'img_boxes = cv2.rectangle(rgb, (xmin, ymax), (xmax, ymin), (0, 255, 0), 1)font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(img_boxes, label, (xmin, ymax-10), font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)cv2.putText(img_boxes, score_txt, (xmax, ymax-10), font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)# 显示处理后的图像,并在按下'q'键时退出循环。# Display the resulting framecv2.imshow('black and white', img_boxes)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头资源并关闭所有OpenCV窗口,确保程序正常结束。
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
实现结果展示

enjoy
github:liveCamer
相关文章:
pycv实时目标检测快速实现
使用python_cv实现目标实时检测 python 安装依赖核心代码快速使用实现结果展示enjoy python 安装依赖 opencv_python4.7.0.72 pandas1.5.3 tensorflow2.11.0 tensorflow_hub0.13.0 tensorflow_intel2.11.0 numpy1.23.5核心代码快速使用 # 使用了TensorFlow Hub和OpenCV库来实…...
记录下如何让字体在div内 自动换行 上下居中
div内样式 display: flex; // flex布局 justify-content: center; // 上下居中 align-items: center; // 左右居中 overflow-wrap: break-word; // 允许字体换行 (若行内的单词无法放下则换行) word-break: break-all; // 强制文本在任意字符间进…...
Shell篇之编写MySQL启动脚本
Shell篇之编写MySQL启动脚本 1. 脚本内容 vim mysql_ctl.sh#!/bin/bashmysql_port3306 mysql_username"root" mysql_password"molinker" mysql_conf"/opt/lanmp/mysql/etc/my.cnf" mysql_sock"/opt/lanmp/mysql/var/mysql.sock"func…...
supermap Iclient3d for cesium加载地形并夸大地形
先看效果图 这是没有夸张之前的都江堰 这是夸大五倍后的都江堰 下面展示代码 主要就是加载supermaponline的skt地形然后夸大 <template><div class"PartOneBox"><div id"cesiumContainer"></div></div> </template>…...
一文解读OLAP的工具和应用软件
OLAP(OnlineAnalyticalProcessing)是一种用于快速分析大规模、多维度数据的方法。OLAP工具和应用软件则是帮助人们进行OLAP分析的重要工具。本文将介绍几种常见的OLAP工具和应用软件,并探讨它们在数据分析中的作用。 一 OLAP工具的分类 在选…...
xml重点笔记(尚学堂 3h)
XML:可扩展标记语言 主要内容(了解即可) 1.XML介绍 2.DTD 3.XSD 4.DOM解析 6.SAX解析 学习目标 一. XML介绍 1.简介 XML(Extensible Markup Language) 可扩展标记语言,严格区分大小写 2.XML和HTML XML是用来传输和存储数据的。 XML多用在框架的配置文件…...
爬虫代理API的全面解析:让数据抓取更高效
在大数据时代,网络爬虫已经成为收集和分析数据的重要工具。然而,频繁的请求会导致IP被封禁,这时候爬虫代理API就显得尤为重要。本文将详细介绍爬虫代理API的作用、优势及如何使用,帮助你更高效地进行数据抓取。 什么是爬虫代理AP…...
PCL 点云中的植被信息提取(C++详细过程版)
目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接,首发于:2024年9月18日。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的抄袭狗。 一、算法原理 1、原理概述 点云具有丰富的色彩信息,可以与植被指数结合使…...
requests-html的具体使用方法有哪些?
requests-html是一个功能强大的Python库,用于发送HTTP请求和解析HTML内容。它的使用方法包括安装库、基本使用、发送带有参数的请求、图片抓取实战案例、解析网页内容、执行JavaScript代码、使用CSS选择器来查找元素、继续跟踪链接并获取内容等。 安装request…...
YOLOv9改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核
一、本文介绍 本文记录的是利用AKConv优化YOLOv9的目标检测网络模型。标准卷积操作的卷积运算局限于局部窗口,无法捕获其他位置的信息,且采样形状固定,无法适应不同数据集和位置中目标形状的变化。而AKConv旨在为卷积核提供任意数量的参数和…...
图神经网络池化方法
图神经网络池化方法 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 图神经网络池化方法前言一、扁平图池化二、分层图池化1.节点聚类池化2.节点丢弃池化 参考文献 前言 图池化操作根据其池化策略的差异ÿ…...
小琳AI课堂:确保大语言模型安全的八大策略--从数据隐私到用户教育
大家好,这里是小琳AI课堂。今天我们深入探讨如何保证大语言模型的安全,这可是关系到我们每个人哦!🔐 首先,我们要明白,保证大语言模型的安全,需要从多个方面入手,确保模型在技术、法…...
Python 数学建模——高斯核密度估计
文章目录 前言原理代码实例scipy 实现seaborn 实现 前言 高斯核密度估计本是一种机器学习算法,在数学建模中也可以发挥作用。本文主要讨论用它来拟合变量的概率密度,获得概率密度函数 f ( x ) f(x) f(x)。 原理 已知一个连续型随机变量 X X X 的一系列…...
Flink+Spark相关记录
FlinkSpark相关记录 FlinkSQL Flink Streaming的一些点覆写RichSource、RichSink、RichMap 1.Source自动负载均衡,CDC源端加入一个全局调控的节点监控流量流速 2.Sink并发写入 3.Map与Iterator与增量迭代等用法关于Checkpoint几个用法 1.提交Commit至目的端数据库 2…...
2023 hnust 湖科大 毕业实习 报告+实习鉴定表
2023 hnust 湖科大 毕业实习 报告实习鉴定表 岗位 IT公司机房运维 实习报告 实习鉴定表 常见疑问 hnust 湖科大 毕业实习常见问题30问(2021 年7月,V0.9)-CSDN博客时间:大四开学第三四周毕业实习23年是企业(黑马&am…...
ConflictingBeanDefinitionException | 运行SpringBoot项目时报错bean定义冲突解决方案
具体报错: Caused by: org.springframework.context.annotation.ConflictingBeanDefinitionException: Annotation-specified bean name ‘CommissionMapperImpl’ for bean class [com.xxx.mapper.carrier.CommissionMapperImpl] conflicts with existing, non-co…...
如何切换淘宝最新镜像源(npm)【2024版】
在使用 Node.js 和 npm 进行开发时,大家通常会遇到 npm 源速度较慢的问题。特别是当你需要安装大量依赖时,npm 官方源的速度可能不尽如人意。幸运的是,淘宝提供了一个更快速的 npm 镜像源,可以让你更快地下载和安装包。本文将介绍…...
YoloV10改进策略:Block改进|PromptIR(NIPS‘2023)|轻量高效,即插即用|(适用于分类、分割、检测等多种场景)
文章目录 摘要代码详解如何在自己的论文中描述改进方法测试结果总结摘要 本文使用PromptIR框架中的PGM模块来改进YoloV10。PGM(Prompt Generation Module)模块是PromptIR框架中的一个重要组成部分,主要负责生成输入条件化的提示(prompts)。这些提示是一组可学习的参数,它…...
使用rust自制操作系统内核
一、系统简介 本操作系统是一个使用rust语言实现,基于32位的x86CPU的分时操作系统。 项目地址(求star):GitHub - CaoGaorong/os-in-rust: 使用rust实现一个操作系统内核 详细文档:自制操作系统 语雀 1. 项目特性 …...
Flink难点和高阶面试题:Flink的状态管理机制如何保证数据处理的准确性和完整性
1 Flink状态管理机制核心要素 1.1 内置状态后端 在Apache Flink中,状态管理机制是确保数据处理准确性与完整性的关键环节。其核心在于灵活且高效的状态后端,这些后端负责在分布式环境中安全地存储和访问状态数据。Flink提供了多种内置状态后端,其中RocksDB和内存状态后端最…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...
