Python 中 三种常用的绘图方式 ! ! !
一 Matplotlib可视化
在Python中,Matplotlib是一个功能强大的绘图库,特别是其Pyplot模块,提供了类似于MATLAB的绘图接口,使得用户可以轻松绘制各种2D图表。下面我们将详细介绍使用Matplotlib进行可视化的基本步骤以及常用图形的绘制方法。
步骤
- 创建画板和坐标轴对象
- 使用Matplotlib时,首先需要创建一个图形(画板)和坐标轴对象。但在简单的绘图中,这一步通常是隐式完成的。
- 绘制指定的图形
- 使用Pyplot提供的各种函数绘制图形,如线图、散点图、条形图、直方图、饼图等。
- 设置坐标轴值、网格、标题等
- 可以通过Pyplot提供的函数设置坐标轴的标签、范围、网格线、图表的标题和注释等。
- 画图
- 使用
plt.show()函数显示图表。
- 使用
涉及到的图形
- hist():用于绘制直方图,展示数据的分布情况。
- scatter():用于绘制散点图,显示两个变量之间的关系。
- plot():最常用的函数之一,用于绘制线图和散点图。
- bar():用于绘制垂直条形图和水平条形图,展示不同类别的数据对比。
- pie():用于绘制饼图,显示各部分在总体中所占的比例。
- imshow():用于绘制图像,特别是热力图或图像数据。
- subplots():用于创建子图,即在一个图形窗口中绘制多个图表。
示例
状态接口方式
下面是一个使用状态接口方式绘制简单线图的示例:
import matplotlib.pyplot as plt # 1. 准备x轴 和 y轴的数据.
x = [-3, 5, 7] # x轴坐标
y = [1, 4, 9] # y轴坐标 # 2. 绘制线图
plt.plot(x, y) # 3. 设置坐标轴标签和标题
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Simple Line Plot') # 4. 画图
plt.show()
参数了解
plot() 函数是Matplotlib中最基础也是最常用的函数之一,其参数非常灵活,支持多种格式和选项。
- x, y:点的坐标或线的节点,可以是列表或数组。
- fmt:可选,定义基本格式,如颜色、标记和线条样式。
- **kwargs:可选,用于设置其他属性,如标签、线宽等。
颜色字符如 'b' 表示蓝色,'r' 表示红色等;线型参数如 '-' 表示实线,'--' 表示破折线等;标记字符如 'o' 表示实心圈,'.' 表示点等。
二 Pandas自带绘图功能
Pandas是一个强大的Python数据分析库,它内置了基于Matplotlib的绘图功能,使得数据分析师和科学家能够方便地对数据进行可视化。Pandas的绘图功能通过DataFrame或Series对象的.plot方法实现,提供了多种图表类型来满足不同的数据可视化需求。
格式
Pandas的绘图功能非常直观,其基本格式如下:
df对象.plot.图形名(参数)
# 或者
Series对象.plot.图形名(参数)
这里的df对象是指Pandas的DataFrame对象,而Series对象则是指Pandas的Series对象。图形名指的是你想要绘制的图表类型,如bar、line、area等。参数则是用于自定义图表的各种选项,如大小、字体、颜色等。
常用参数
- figsize:用于设置图表的大小,格式为
(宽, 高),单位为英寸。 - fontsize:用于设置图表中字体的大小。
- color:用于设置图表中元素的颜色,可以是颜色的缩写(如'r'代表红色),也可以是颜色的十六进制表示(如'#FF0000'也代表红色)。
常用图形
- bar():绘制条形图,展示不同类别的数据对比。
- line():绘制线图,展示数据随时间或其他连续变量的变化趋势。
- area():绘制面积图,与线图类似,但下方区域会被填充颜色,常用于显示累计数据。
- pie():绘制饼图,展示各部分在总体中所占的比例。
- hist():绘制直方图,展示数据的分布情况。
- scatter():绘制散点图,显示两个变量之间的关系。
示例
假设我们有一个Pandas DataFrame df,它包含了某产品的月销量数据:
import pandas as pd
import numpy as np # 创建一个示例DataFrame
np.random.seed(0)
data = {'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
'Sales': np.random.randint(100, 300, 6)}
df = pd.DataFrame(data) # 绘制条形图
df.plot.bar(x='Month', y='Sales', figsize=(10, 6), fontsize=14, color='skyblue') # 显示图表
plt.show()
在这个示例中,我们首先导入了pandas和numpy库,并创建了一个包含月份和销量的DataFrame。然后,我们使用.plot.bar()方法绘制了一个条形图,其中x='Month'指定了x轴为月份,y='Sales'指定了y轴为销量,figsize=(10, 6)设置了图表的大小,fontsize=14设置了字体大小,color='skyblue'设置了条形的颜色。最后,我们使用plt.show()显示了图表。
注意:在Pandas的绘图示例中,我们通常还需要导入Matplotlib的pyplot模块(import matplotlib.pyplot as plt),因为Pandas的绘图功能是基于Matplotlib实现的,尽管在Pandas的绘图方法中不需要显式调用plt.show()来显示图表(Pandas的.plot()方法内部已经调用了它),但在某些情况下(如需要自定义图表显示顺序时),我们仍然需要显式地调用plt.show()。然而,为了保持示例的简洁性,上述示例中并没有显式导入pyplot模块。在实际应用中,请确保已经正确导入了所需的模块。
三 Seaborn绘图
Seaborn(简称sns)是一个基于matplotlib的高级绘图库,它提供了一个更高级的接口来绘制各种吸引人的统计图形。Seaborn旨在使绘图变得更加简单,同时产生更美观和更复杂的图表。以下是关于如何使用Seaborn进行可视化的一些详细指导,包括常用的图形类型、设置图形样式和风格的步骤。
图形名
- histplot():绘制直方图,展示数据的分布情况。
- kdeplot():绘制核密度估计图,用于展示数据的连续分布。
- countplot():绘制计数图(条形图),展示不同类别的计数。
- scatterplot():绘制散点图,展示两个变量之间的关系。
- regplot():绘制回归图,展示两个变量之间的线性关系。参数
fit_reg=True表示绘制回归线。 - jointplot():绘制联合分布图,展示两个变量的分布及其关系。参数
kind='hex'表示使用六边形分箱(hexbin)来显示密度。 - boxplot():绘制箱线图,展示数据的分布情况,包括中位数、四分位数等统计量。
- violinplot():绘制小提琴图,与箱线图类似,但更侧重于显示数据的分布密度。参数
hue用于分组数据,split=True表示在分组的情况下将小提琴图分开显示。
绘图基本格式
import seaborn as sns
import matplotlib.pyplot as plt # 假设df是已经存在的DataFrame
fig, ax = plt.subplots(figsize=(宽, 高)) # 创建图形和坐标轴对象
sns.图形名(data=df对象, x='x轴数据', y='Y轴数据', ...) # 绘制图形
ax.set_title('标题') # 设置标题
plt.show() # 显示图形
风格和样式
Seaborn提供了几种不同的绘图风格和样式,可以通过sns.set_style('风格名')来设置。
- white:纯白色背景,无网格线。
- whitegrid:白色背景,带有网格线。
- dark:暗色背景,无网格线。
- darkgrid:暗色背景,带有网格线。
- ticks:与whitegrid类似,但网格线更细。
示例
import seaborn as sns
import matplotlib.pyplot as plt # 设置绘图风格
sns.set_style('darkgrid') # 假设tips是一个已经存在的DataFrame
fig, ax = plt.subplots(figsize=(10, 6))
sns.scatterplot(data=tips, x='total_bill', y='tip', hue='day')
ax.set_title('Tips by Day and Total Bill')
plt.show()
在这个示例中,我们首先设置了绘图风格为darkgrid,然后创建了一个图形和坐标轴对象。接着,我们使用sns.scatterplot()绘制了一个散点图,其中data=tips指定了数据源,x='total_bill'和y='tip'分别指定了x轴和y轴的数据列,hue='day'表示根据day列的不同值对散点进行分组和着色。最后,我们设置了图表的标题并显示了图表。
相关文章:
Python 中 三种常用的绘图方式 ! ! !
一 Matplotlib可视化 在Python中,Matplotlib是一个功能强大的绘图库,特别是其Pyplot模块,提供了类似于MATLAB的绘图接口,使得用户可以轻松绘制各种2D图表。下面我们将详细介绍使用Matplotlib进行可视化的基本步骤以及常用图形的…...
统一回复OneAPI:failed to get gpt-3.5-turbo token encoder的解决办法
源码方式安装后启动OneAPI时提示failed to get gpt-3.5-turbo token encode,缺少编码文件的解决办法。 1、编辑encoding.go文件 vim /root/go/pkg/mod/github.com/pkoukk/tiktoken-gov0.1.7/encoding.go 注意:tiktoken-gov0.1.7要根据实际情况&#x…...
Flash Attention是怎么做到又快又省显存的?
Flash Attention 并没有减少 Attention 的计算量,也不影响精度,但是却比标准的Attention运算快 2~4 倍的运行速度,减少了 5~20 倍的内存使用量。究竟是怎么实现的呢? Attention 为什么慢? 此处的“快慢”是相对而言的…...
CAN报文ID过滤
在CAN通信中,CAN_FILTERMODE_LIST和CAN_FILTERMODE_MASK是用于CAN过滤器配置的两种不同过滤模式。 1. CAN_FILTERMODE_LIST: - 当CAN过滤器使用CAN_FILTERMODE_LIST模式时,过滤器将匹配通过滤器的标识符列表中的任何一个标识符。换句话说…...
ELK-05-skywalking监控SpringCloud服务日志
文章目录 前言一、引入依赖二、增加日志配置文件三、打印日志四、skywalking网页查询链路五、日志收集5.1 修改logback-spring.xml5.2 重启SpringCloud服务并请求test接口5.3 查看skywalking网页的Log 总结 前言 基于上一章节,现在使用skywalkin监控SpringCloud服务…...
17年数据结构考研真题解析
第一题: 解析: 我们说递归要找出口,这道题的出口是sum<n,经过观察可以得知:sum123。。。k 设第k次循环跳出,则有sum123。。。k<n k<,很显然答案选B 第二题: 解析: 第一句&a…...
nginx 安装(Centos)
nginx 安装-适用于 Centos 7.x [rootiZhp35weqb4z7gvuh357fbZ ~]# lsb_release -a LSB Version: :core-4.1-amd64:core-4.1-noarch Distributor ID: CentOS Description: CentOS Linux release 7.9.2009 (Core) Release: 7.9.2009 Codename: Core# 创建文件…...
异步编程利器:深入解析 Python 异步并发库 Gevent
在现代 Python 应用开发中,并发编程 是提高程序性能、处理多个任务的关键手段之一。虽然 Python 有原生的多线程、多进程模块,但这些模块存在一些限制,比如全局解释器锁(GIL)会影响多线程程序的执行效率。此外…...
Python pyusb 使用指南【windows+linux】
前言:USB(通用串行总线)作为一种高度通用性的硬件接口,在诸多领域均有应用。在C中可以直接使用libusb库即可完成USB设备信息查询、USB设备监听、与USB设备控制端点、数据(同步、批量、中断)端点进行指令、数据交互等功能。python中…...
Xcode报错:The request was denied by service delegate (SBMainWorkspace)
Xcode报错:The request was denied by service delegate (SBMainWorkspace) 造成的原因: (1)新的M2芯片的Mac电脑 (2) 此电脑首次安装启动Xcode的应用程序 (3)此电脑未安装Rosetta 解决方法: (1)打开终端…...
面试系列-携程暑期实习一面
Java 基础 1、Java 中有哪些常见的数据结构? 图片来源于:JavaGuide Java集合框架图 Java 中常见的数据结构包含了 List、Set、Map、Queue,在回答的时候,只要把经常使用的数据结构给说出来即可,不需要全部记住 如下&…...
你以为建站很复杂?Baklib 5分钟解决你的痛点
你以为建站很复杂?Baklib 5分钟解决你的痛点! 在这个“快节奏”的互联网时代,想要快速搭建一个网站是很多人的刚需。今天我要介绍的,就是如何利用Baklib的CMS/Wiki模板,五分钟内让你的网站“横空出世”。废话不多说&am…...
极狐GitLab 17.4 重点功能解读【二】
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…...
LVS-DR实战案例,实现四层负载均衡
环境准备:三台虚拟机(NET模式或者桥接模式) 192.168.88.200 (web1)(安装nginx服务器作为测试) 192.168.88.201 (服务器)(用于部署lvs-dr) 192.168.88.202 (web2)…...
网游和3A类型游戏的CPU选择分析
目录 1. CPU性能基础 1.1 主频 1.2 三级缓存(L1、L2、L3缓存) 1.3 架构 1.4 单核与多核性能 2. 游戏类型分析 2.1 网游:以《永劫无间》为例 多核性能需求: 单核性能需求: CPU选择建议: 2.2 3A类…...
2024免费录屏软件的宝藏功能与实用技巧
在手机上操作很多时候为了记录方便都直接截图或者录屏,其实电脑也一样。现在面向电脑的录屏工具纷繁复杂,很容易让我们挑花了眼。今天这篇文章我将介绍几款免费的录屏软件为大家提供参考。 1.福昕录屏大师 链接达达:www.foxitsoftware.cn/R…...
linux---进程程序替换详解
提示:以下是本篇文章正文内容,下面案例可供参考 一、程序替换的原理 我们可以创建子进程通过程序替换,来执行不同的程序。程序替换不会重新创建子进程,我们通过程序替换函数,内核将磁盘中的可执行程序和数据加载到内存…...
笔试编程-百战成神——Day01
1.数字统计 题目来源:数字统计——牛客网 测试用例 算法原理 根据题目我们知道,首先要输出两个数字确定一个区间,寻找这个区间内数字中所有包含2的个数,比如12包含一个2,22包含两个2,以此类推,所以我们的…...
Qt+toml文件读写
Qttoml 使用 cpptoml 库示例Qt 项目中的代码示例 解释注意事项 在Qt中使用TOML(Tom’s Obvious, Minimal Language)格式的文件,可以通过第三方库来实现,例如 cpptoml。TOML是一种易于阅读和写入的配置文件格式,与JSON…...
浅谈C++之指针
一、基本介绍 在C中,指针是一种复杂的数据类型,它存储了另一个变量的内存地址。通过指针,程序可以直接访问和操作内存,这为编程提供了极大的灵活性和效率,但同时也增加了复杂性和潜在的错误风险。 二、指针的概念 指针…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
