当前位置: 首页 > news >正文

GPT-4老板:AI可能会杀死人类,已经出现我们无法解释的推理能力

来源: 量子位  微信号:QbitAI

“AI确实可能杀死人类。”

这话并非危言耸听,而是OpenAI CEO奥特曼的最新观点。

而这番观点,是奥特曼在与MIT研究科学家Lex Fridman长达2小时的对话中透露。

不仅如此,奥特曼谈及了近期围绕ChatGPT产生的诸多问题,坦承就连OpenAI团队,也根本没搞懂它是如何“进化”的:

从ChatGPT开始,AI出现了推理能力。但没人能解读这种能力出现的原因。

唯一的途径是向ChatGPT提问,从它的回答中摸索它的思路。

针对马斯克在推特上的“危险论”,他直言:

马斯克在我心中是英雄,我支持也理解他的担忧。

虽然他在推特上挺混蛋的,但希望马斯克能看到我们在解决AGI安全问题上付出了多大的努力。

除此之外,在这场对话过程中,奥特曼还提到了不少刁钻的话题,例如:

  • ChatGPT、GPT-4开发的内幕

  • GPT-4是人类迄今所实现的最复杂的软件

  • 如何看待大家拿ChatGPT越狱

  • ……

在看过这场对话之后,网友直呼:

两位AI大佬用大家都能理解的方式聊AI,多来点这样的访谈。

那么接下来,我们就来一同看下他们这场深度对话。

GPT-4内幕大曝光

GPT-4是这场对话中最受关注的部分。

它是如何训练的?如何在训练模型时避免浪费算力?如何解决AI回答不同价值观的人的问题?

首先是训练过程,依旧是预训练+RLHF,不过透露了一点具体细节。

GPT-4早在去年夏天就已经训练完成,后面一直在进行对齐工作,让它表现得更符合人类需求。

相比预训练数据集,RLHF所用的数据非常少,但效果是决定性的。

对此,奥特曼透露了一点数据来源,包含一些开源数据集、以及合作商提供的部分数据集。

当然,数据集中也有一点Reddit论坛上出现的迷因梗(meme),但不是很多。对此奥特曼遗憾表示:

如果再多点,它的回答可能会更有趣。

即便如此,团队甚至奥特曼自己依旧不能完全解读GPT-4。

目前对它的解读方式,依旧是通过不断问它问题,通过它的回答来判断它的“思路”。

而就在不断测试中,OpenAI发现从ChatGPT开始,GPT系列出现了推理能力

虽然ChatGPT绝大部分时候都被当做数据库使用,但它确实也出现了一定的推理能力,至于这种能力具体如何出现的,目前却无人能回答。

但大模型的训练往往意味着大量算力需求。对此奥特曼再次提到了OpenAI独特的训练预测方法:

即便模型很大,团队目前也有办法只通过部分训练,预测整个模型的性能,就像是预测一名1岁的婴儿能否通过SAT考试一样。

关于这一点,在GPT-4论文和官方博客中也有更详细介绍。

最后奥特曼承认,GPT-4确实存在应对不同价值观的人的问题。

临时解决办法就是把更改系统消息(system message)的权限开放给用户,也就是ChatGPT中经常见到的那段“我只是一个语言模型……”。

通过改变系统消息,GPT-4会更容易扮演其中规定的角色,比在对话中提出要求的重视程度更高,如规定GPT-4像苏格拉底一样说话,或者只用JSON格式回答问题。

所以,对于GPT系列来说,谁最可能载入人工智能史册?奥特曼倒不认为是GPT-4:

从可用性和RLHF来看,ChatGPT无疑是最具里程碑的那一个,背后的模型没有产品的实用性重要

最会打太极的CEO

GPT-4论文中没有透露参数规模、训练数据集大小等更多细节,还被外界吐槽越来越不Open了。

在这次访谈中,面对主持人步步追问,奥特曼依旧守口如瓶。

GPT-4预训练数据集有多大?奥特曼只是很笼统的介绍了有公开数据集、有来自合作伙伴的内容(如GitHub提供的代码)还有来自网络的内容。

活像ChatGPT也能写出来的那种赛博八股文,只有在谈到Reddit的时候透露了网络梗图在训练数据中占比不大,“不然ChatGPT可能更有趣一些”。

GPT-4模型参数量有多大?奥特曼只是说之前疯传的100万亿参数是谣言,然后又糊弄过去了。

我认为人们被参数竞赛所吸引,就像过去被CPU的主频竞赛所吸引一样。现在人们不再关心手机处理器有多少赫兹了,关心的是这东西能为你做什么。

不过奥特曼对于一种说法是持有肯定态度——“GPT-4是人类迄今所实现的最复杂的软件”

但在主持人Lex突然抛出一些时下针对GPT-4的尖锐观点时,奥特曼的应对也堪称“AI般淡定”(狗头)。

例如,关于前段时间闹得沸沸扬扬的GPT-4越狱问题。

一名斯坦福教授仅仅用30分钟,就诱导GPT-4制定出了越狱计划,并全部展示了出来。

对此奥特曼表示,就如同当年iPhone也面临被“黑”或者说越狱的问题(如当年免费的越狱版App Store)一样,这并非不能解决的事情。

奥特曼甚至坦承,他当年就把自己的第一台苹果手机越狱了——甚至当时觉得这是个很酷的事情。

但现在已经没有多少人去干苹果越狱的事情了,因为不越狱也足够好用了。

奥特曼表示,OpenAI的应对思路同样如此,即把功能做的足够强,他甚至表示,愿意在这方面给用户开更多权限,以便了解他们到底想要什么。

除此之外,Lex还提到了马斯克对于奥特曼的批评。

奥特曼虽然是当年被马斯克一手提拔的人才,但如今马斯克不仅退出了他们联手创办的OpenAI,还对OpenAI现状十分不满,经常在推特上阴阳怪气这家公司。

我捐1亿美金成立的非营利组织怎么就变成一个300亿市值的营利性公司了呢?如果这是合法的,为什么其他人不这样做?

作为OpenAI现任CEO,奥特曼并未直接回应此事,而是调侃了一下马斯克在航天领域也经常被“老前辈”们批评的事情。

这一系列采访问答,不禁让人想到在ChatGPT发布后,奥特曼对于记者“将ChatGPT整合进微软必应和Office”问题的回应方式:

你知道我不能对此发表评论。我知道你知道我不能对此发表评论。你知道我知道你知道我不能对此发表评论。

既然如此,为什么你还要问它呢?

GPT的“偏见”不会消失

GPT在迭代过程中“偏见”必然存在,它不可能保持完全中立。

在主持人提到关于ChatGPT以及GPT-4种存在的偏见问题时,奥特曼这样回应道。

ChatGPT在推出之初,就不是一个成熟的产品,它需要不断迭代,而在迭代的过程中,仅仅依靠内部的力量是无法完成的。

“提前”推出ChatGPT技术,是要借助外部世界的集体智慧和能力,同时也能让全世界参与进“塑造AI”的过程中。

而不同人对于问题的看法也各不相同,所以在这个过程中,“偏见”问题就不可避免。

甚至奥特曼在话里话外也透露着:在GPT中,“偏见”永远不会消失

他将外部参与建设GPT比作“公开领域建设的权衡”。

GPT生成答案是个性化控制的结果,迭代的过程则是更精准地控制“个性化”的过程。

有趣的是,期间奥特曼还暗戳戳“背刺”起了马斯克的推特:

推特摧毁掉的多元性,我们正在将其找回来。

(嗯,奥特曼是懂一些话术的)

当然,谈到ChatGPT,总绕不开其背后的公司OpenAI,在成立之初,它就立下了两个Flag:

  • 1、非营利性

  • 2、通用人工智能(AGI)

如今,已经过去八年之久,这两个Flag也是发生了巨大的变化:AGI的大旗还在高举,而非营利性这面旗则已经摇摇欲坠。

对此,奥特曼也是分别作出了回应。

对于OpenAI“非营利性质”的逐渐削弱,奥特曼直言:很久之前,就已经意识到非营利性不是长久之计

仅仅依靠非营利筹集到的资金对OpenAI的研究来说远远不够,商业化是必然选择。

但在之后奥特曼也试图“找补”回一些,称目前的商业化的程度仅止于满足投资者与员工的固定回报,剩余资金还是会流向非营利性组织。

提到AGI,一开始在OpenAI声称要做通用人工智能时,还有一堆人在嘲讽,如今做出GPT-4这样的产品,回过头来再看,嘲讽的声音已经越来越少了。

而面对外界询问“GPT-4是AGI吗”这样的问题时,奥特曼则是直接给出了自己理解中的AGI:

AGI所掌握的知识应该是要超过人类科学知识总和的,并且具有创造性,能够推动基础科学的发展;

而目前所有GPT并不能做到这些,想要达到AGI还需要在目前GPT的范式上进行拓展,至于如何拓展,正是目前所缺乏的。

值得一提的是,谈到AGI时,是奥特曼在访谈中鲜有的“两眼放光”的时刻。

他抛出了一句极具“科研分子理想情怀”的金句:

也许AGI是永远抵达不了的乌托邦,但这个过程会让人类越来越强大。

但奥特曼并不否认过分强大的AGI“可能杀死人类”这一观点:

我必须承认,(AI杀死人类)有一定可能性。

很多关于AI安全和挑战的预测被证明是错误的,我们必须正视这一点,并尽早尝试找到解决问题的方法。

One More Thing

在谈话最后,Lex Fridman还试图让奥特曼讲一些给年轻人们的建议,奥特曼直接来了个“反鸡汤文学”:

网络上的“成功学”帖子太诱人,建议不要听太多建议。

我就是无视建议做到现在这样的。

参考链接:
https://www.youtube.com/watch?v=L_Guz73e6fw

相关文章:

GPT-4老板:AI可能会杀死人类,已经出现我们无法解释的推理能力

来源: 量子位 微信号:QbitAI “AI确实可能杀死人类。” 这话并非危言耸听,而是OpenAI CEO奥特曼的最新观点。 而这番观点,是奥特曼在与MIT研究科学家Lex Fridman长达2小时的对话中透露。 不仅如此,奥特曼谈及了近期围绕ChatGPT…...

弹性盒布局

系列文章目录 前端系列文章——传送门 CSS系列文章——传送门 文章目录系列文章目录弹性盒模型(FlexibleBox 或 flexbox)什么是弹性盒?基本配置项给父元素添加给子元素添加弹性盒案例滚动条青蛙网页练习旧的弹性盒display:box 属性浏览器的兼…...

第13章_事务基础知识

第13章_事务基础知识 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目前…...

LeetCode笔记:Biweekly Contest 101

LeetCode笔记:Biweekly Contest 101 1. 题目一 1. 解题思路2. 代码实现 2. 题目二 1. 解题思路2. 代码实现 3. 题目三 1. 解题思路2. 代码实现 4. 题目四 1. 解题思路2. 代码实现 比赛链接:https://leetcode.com/contest/biweekly-contest-101/ 1. 题…...

new和malloc两个函数详细实现与原理分析

1.申请的内存所在位置 new操作符从自由存储区(free store)上为对象动态分配内存空间,而malloc函数从堆上动态分配内存。自由存储区是C基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储…...

[ROC-RK3568-PC] [Firefly-Android] 10min带你了解LCD的使用

🍇 博主主页: 【Systemcall小酒屋】🍇 博主追寻:热衷于用简单的案例讲述复杂的技术,“假传万卷书,真传一案例”,这是林群院士说过的一句话,另外“成就是最好的老师”,技术…...

【redis】redis分布式锁

目录一、为什么需要分布式锁二、分布式锁的实现方案三、redis分布式锁3.1 简单实现3.2 成熟的实现一、为什么需要分布式锁 1.在java单机服务中,jvm内部有一个全局的锁监视器,只有一个线程能获取到锁,可以实现线程之间的互斥 2.当有多个java服…...

UEditorPlus v3.0.0 接口请求头参数,插入换行优化,若干问题优化

UEditor是由百度开发的所见即所得的开源富文本编辑器,基于MIT开源协议,该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器,主要做了样式的定制,更符…...

LabVIEW 2015介绍

这里写目录标题LabVIEW 2015安装包LabVIEW 2020安装包Labview2015安装过程1、LabVIEW 2015 的介绍2、LabVIEW 2015 的特点3、LabVIEW 2015 的功能4、LabVIEW 2015 快捷键LabVIEW 2015安装包 链接:https://pan.baidu.com/s/1I1cxtbBkmJbHvDTc5JnOyQ 提取码&#xff1…...

大一被忽悠进了培训班

大家好,我是帅地。 最近我的知识星球开始营业,不少大一大二的小伙伴也是纷纷加入了星球,并且咨询的问题也是五花八门,反正就是,各种迷茫,其中有一个学弟,才大一,就报考培训班&#…...

编写一个存储过程,输入一个日期,判定其距离年底还有多少天

--编写一个存储过程,输入一个日期,判定其距离年底还有多少天 create or replace procedure sp_end(i_date varchar2,o_end out varchar2) is --声明两个变量,v_end存放经过转化的年底日期,v_errm用来存放异常 v_end date; v_errm…...

HTB-Inject

HTB-Inject信息收集开机root信息收集 228080 8080端口如下。 主界面有一个上传图片的功能。 简单测试后发现对上传文件后缀名应该有过滤,只允许jpg后缀名文件上传。将一个内容为”test“的txt文件修改后缀为jpg后上传会出现错误。 验证一下是否存在LFI。 验证一…...

java基础知识——13.类与对象

这篇文章,我们来介绍java中的类与对象 目录 1.面向对象的介绍 2.类的设计与使用 2.1 类和对象 2.1.1 如何定义类 2.2 类的注意事项 3.封装 3.1 private关键字 4.this关键字 5.构造方法 6.标准JavaBean 7.对象内存图 8.成员变量与局部变量 1.面向对象的…...

北邮22信通:(10)第三章 3.2栈的实现

北邮22信通一枚~ 跟随课程进度每周更新数据结构与算法的代码和文章 持续关注作者 解锁更多邮苑信通专属代码~ 上一篇文章: 北邮22信通:(9)实验1 题目六:模拟内存管理(搬运官方代码)_青…...

Vue3之使用js实现动画

概述 动画的实现其实不仅可以使用CSS的方式实现,而且还可以使用js的方式实现,二者有啥区别呢?CSS更加注重动画的展现,性能更好,而js的方式性能稍微差点,但是可以在动画执行的每一个过程中做些额外的操作。…...

金三银四,你准备好面试了吗? (附30w字软件测试面试题总结)

不知不觉,已是3月下旬。最近有很多小伙伴都在跟我谈论春招面试的问题,其实对于面试,我也没有太多的经验,只能默默地把之前整理的软件测试面试题分享给Ta。今天就来大致的梳理一下软件测试的面试体系(每一部分最后都有相…...

【C语言学习】数组

数组(Array)就是一些列具有相同类型的数据的集合,这些数据在内存中依次挨着存放,彼此之间没有缝隙。 数组不是C语言的专利,Java、C、C#、JavaScript、PHP 等其他编程语言也有数组。 C语言数组属于构造数据类型。一个…...

ElasticSearch序列 - SpringBoot整合ES:根据指定的 ids 查询

文章目录1. ElasticSearch 根据 ids 查询文档2. SpringBoot整合ES实现 ids 查询1. ElasticSearch 根据 ids 查询文档 ① 索引文档,构造数据 PUT /my_index/_doc/1 {"price":10 }PUT /my_index/_doc/2 {"price":20 }PUT /my_index/_doc/3 {&qu…...

Spark SQL实战(08)-整合Hive

1 整合原理及使用 Apache Spark 是一个快速、可扩展的分布式计算引擎,而 Hive 则是一个数据仓库工具,它提供了数据存储和查询功能。在 Spark 中使用 Hive 可以提高数据处理和查询的效率。 场景 历史原因积累下来的,很多数据原先是采用Hive…...

堆(数据结构系列11)

目录 前言: 1.优先级队列概念 2.堆的概念 3.堆的存储方式 4.堆的创建 5.创建堆的时间复杂度 6.堆的插入和删除 6.1堆的插入 6.2堆的删除 结束语: 前言: 上一次博客中小编主要与大家分享了 二叉树一些相关的知识点和一些练习题&…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...