[C#]使用纯opencvsharp部署yolov11-onnx图像分类模型
【官方框架地址】
https://github.com/ultralytics/ultralytics.git
【算法介绍】
使用纯OpenCvSharp部署YOLOv11-ONNX图像分类模型是一项复杂的任务,但可以通过以下步骤实现:
- 准备环境:首先,确保开发环境已安装OpenCvSharp和必要的.NET框架,如VS2019和.NET Framework 4.7.2。同时,需要YOLOv11的ONNX模型文件、配置文件(描述模型架构)和类别名称文件。
- 加载模型:使用OpenCvSharp的DNN模块加载YOLOv11的ONNX模型。这通常涉及将模型文件路径传递给DNN模块的相关函数。
- 预处理图像:对输入图像进行预处理,如调整大小、归一化等,以满足模型的输入要求。
- 推理与后处理:将预处理后的图像输入到模型中,获取分类结果。对结果进行后处理,包括解析输出、应用非极大值抑制(如果需要)等,以获得最终的分类结果。
- 显示结果:将分类结果显示在界面上,可以通过OpenCvSharp的图像显示功能实现。
值得注意的是,YOLOv11是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。此外,由于OpenCvSharp的DNN模块对ONNX的支持可能有限,某些YOLOv11的特性可能无法在OpenCvSharp中直接实现。在这种情况下,可能需要寻找替代方案,如使用其他深度学习库来加载和运行模型,并通过C#接口与这些库进行交互。
总之,使用纯OpenCvSharp部署YOLOv11-ONNX图像分类模型需要深入理解YOLOv11的模型架构、OpenCvSharp的DNN模块以及ONNX格式。
【效果展示】
【实现部分代码】
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();Yolov11ClsManager ym = new Yolov11ClsManager();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}Stopwatch sw = new Stopwatch();sw.Start();var result = ym.Inference(src);sw.Stop();this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";var resultMat = ym.DrawImage(src,result);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){ym.LoadWeights(Application.StartupPath+ "\\weights\\yolo11n-cls.onnx", Application.StartupPath + "\\weights\\labels.txt");}private void btn_video_Click(object sender, EventArgs e){var detector = new Yolov11ClsManager();detector.LoadWeights(Application.StartupPath + "\\weights\\yolo11n-cls.onnx", Application.StartupPath + "\\weights\\labels.txt");VideoCapture capture = new VideoCapture(0);if (!capture.IsOpened()){Console.WriteLine("video not open!");return;}Mat frame = new Mat();var sw = new Stopwatch();int fps = 0;while (true){capture.Read(frame);if (frame.Empty()){Console.WriteLine("data is empty!");break;}sw.Start();var result = detector.Inference(frame);var resultImg = detector.DrawImage(frame,result);sw.Stop();fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);sw.Reset();Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);//显示结果Cv2.ImShow("Result", resultImg);int key = Cv2.WaitKey(10);if (key == 27)break;}capture.Release();}}
}
【视频演示】
C#使用纯opencvsharp部署yolov11-onnx图像分类模型_哔哩哔哩_bilibili【测试环境】vs2019net framework4.7.2opencvsharp4.8.0更多信息和源码下载参考博文:https://blog.csdn.net/FL1623863129/article/details/142728931, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:https://www.bilibili.com/video/BV1EB1iYXEoi/
【源码下载】
https://download.csdn.net/download/FL1623863129/89852101
【测试环境】
vs2019
net framework4.7.2
opencvsharp4.8.0
相关文章:

[C#]使用纯opencvsharp部署yolov11-onnx图像分类模型
【官方框架地址】 https://github.com/ultralytics/ultralytics.git 【算法介绍】 使用纯OpenCvSharp部署YOLOv11-ONNX图像分类模型是一项复杂的任务,但可以通过以下步骤实现: 准备环境:首先,确保开发环境已安装OpenCvSharp和必…...

【机器学习-无监督学习】概率图模型
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,…...
每日学习一个数据结构-AVL树
文章目录 概述一、定义与特性二、平衡因子三、基本操作四、旋转操作五、应用场景 Java代码实现 概述 AVL树是一种自平衡的二叉查找树,由两位俄罗斯数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明。想了解树的相关概念,请点击这里。以下是对AVL树的…...

课堂点名系统小程序的设计
管理员账户功能包括:系统首页,个人中心,管理员管理,论坛信息管理,基础数据管理,课程信息管理,课程考勤管理,轮播图信息 微信端账号功能包括:系统首页,论坛信…...

使用Python查找WeChat和QQ的安装路径和文档路径
在日常工作和生活中,我们经常需要查找某些应用程序的安装位置或者它们存储文件的位置。特别是对于像WeChat(微信)和QQ这样的即时通讯软件,了解它们的文件存储位置可以帮助我们更好地管理我们的聊天记录和共享文件。今天࿰…...

【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)
目录 🍔 编码器介绍 🍔 前馈全连接层 2.1 前馈全连接层 2.2 前馈全连接层的代码分析 2.3 前馈全连接层总结 🍔 规范化层 3.1 规范化层的作用 3.2 规范化层的代码实现 3.3 规范化层总结 🍔 子层连接结构 4.1 子层连接结…...
【数据结构】【栈】算法汇总
一、顺序栈的操作 1.准备工作 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 typedef struct{SElemType*base;SElemType*top;int stacksize; }SqStack; 2.栈的初始化 Status InitStack(SqStack &S){S.base(SElemType*)malloc(MAXSIZE*sizeof(SElemType));if(…...

如何训练自己的大模型,答案就在这里。
训练自己的AI大模型是一个复杂且资源密集型的任务,涉及多个详细步骤、数据集需求以及计算资源要求。以下是根据搜索结果提供的概述: 详细步骤 \1. 设定目标: - 首先需要明确模型的应用场景和目标,比如是进行分类、回归、生成文本…...
React18新特性
React 18新特性详解如下: 并发渲染(Concurrent Rendering): React 18引入了并发渲染特性,允许React在等待异步操作(如数据获取)时暂停和恢复渲染,从而提供更平滑的用户体验。 通过时…...
汽车发动机系统EMS详细解析
汽车发动机系统EMS,全称Engine-Management-System(发动机管理系统),是现代汽车电子控制技术的重要组成部分。以下是对汽车发动机系统EMS的详细解析,涵盖其定义、工作原理、主要组成、功能特点、技术发展以及市场应用等…...

【社保通-注册安全分析报告-滑动验证加载不正常导致安全隐患】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…...

初学Vue(2)
文章目录 监视属性 watch深度监视computed 和 watch 之间的区别 绑定样式(class style)条件渲染列表渲染基本列表key的原理列表过滤列表排序收集表单中的数据 v-model过滤器(Vue3已移除) 监视属性 watch 当被监视的属性变化时&am…...
ThinkPHP5基础入门
文章目录 ThinkPHP5基础入门一、引言二、环境搭建1、前期准备2、目录结构 三、快速上手1、创建模块2、编写控制器3、编写视图4、编写模型 四、调试与部署1、调试模式2、关闭调试模式3、隐藏入口文件 五、总结 ThinkPHP5基础入门 一、引言 ThinkPHP5 是一个基于 MVC 和面向对象…...
Metal 之旅之MTLLibrary
什么是MSL? MSL是Metal Shading Language 的简称,为了更好的在GPU执行程序,苹果公司定义了一套类C的语言(Metal Shading Language ),在GPU运行的程序都是用这个语言来编写的。 什么是MTLLibrary? .metal后缀的文件…...
第十二章 Redis短信登录实战(基于Session)
目录 一、User类 二、ThreadLocal类 三、用户业务逻辑接口 四、用户业务逻辑接口实现类 五、用户控制层 六、用户登录拦截器 七、拦截器配置类 八、隐藏敏感信息的代码调整 完整的项目资源共享地址,当中包含了代码、资源文件以及Nginx(Wi…...

华为OD机试 - 九宫格游戏(Python/JS/C/C++ 2024 E卷 100分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…...
Pytorch库中torch.normal()详解
torch.normal()用法 torch.normal()函数,用于生成符合正态分布(高斯分布)的随机数。在 PyTorch 中,这个函数通常用于生成 Tensor。 该函数共有四个方法: overload def normal(mean: Tensor, std: Tensor, *, generat…...

atcoder-374(a-e)
atcoder-374 文章目录 atcoder-374ABC简洁的写法正解 D正解 E A #include<bits/stdc.h>using namespace std;signed main() {string s;cin>>s;string strs.substr(s.size()-3);if(str "san") puts("Yes");else puts("No");return 0…...

idea2024设置中文
今天下载idea2024.2版本,发现已经装过中文插件,但是还是不显示中文,找了半天原来还需要设置中文选项 方案一 点击文件 -> 关闭项目 点击自定义 -> 选择语言 方案二 点击文件 -> 设置 外观与行为 -> 系统设置 -> 语言和地区…...
跨境电商独立站轮询收款问题
想必做跨境电商独立站的小伙伴,对于PayPal是再熟悉不过了,PayPal是一个跨国际贸易的支付平台,对于做独立站的朋友来说跨境收款绝大部分都是依赖PayPal以及Stripe条纹了。简单来说PayPal跟国内的支付宝有点类似,但是PayPal它是跨国…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...