用Python实现的高校教师资格考试题库程序
最近朋友参加了高校教师资格考试,在考试前需要刷题来保证通过。但是教资网站上的题库只有接近考试才更新,并且官方题库的刷题效率还是有点低。

 👆官方题库的样子
于是想到了是否能够将官方题库内容记录下来,然后自己创建一个高效刷题的小程序。于是首先将官方题库提交了很多遍,然后把题库里的内容全都输入到了Excel里,并按照题干——答案——选项的结构进行了组织。

显然,我们要用Python来做题库软件的第一步是将Excel内的题目内容读取出来。这次我们选择了openpyxl库来进行Excel内容的读取。
首先,通过一个for循环来将Excel内的题目依次读出,读出后全都按照(题干、正确答案、选项1、选项2、选项3、选项4)的模式存放在一个元组内,然后再将该元组存放到一个列表里。
t=[]
for i in range(485):tmp=(s1.cell(i+1,1).value,s1.cell(i+1,2).value,s1.cell(i+1,3).value,s1.cell(i+1,4).value,s1.cell(i+1,5).value,s1.cell(i+1,6).value,)t.append(tmp)
 
之后我们要做的就是随机抽题,然后将抽到的题目和备选答案通过控制台输出。在输出之前,我们会根据抽选到的元组的第2个元素的值(正确答案)的长度来确定该题是单选题还是多选题,由此再选择不同的判断分支以实现输出题目前的题型显示。
index=random.randint(0,484)if len(t[index][1])==1:print("单选题:" +t[index][0])else:print("多选题:"+t[index][0])print("A:" + str(t[index][2]))print("B:" + str(t[index][3]))print("C:" + str(t[index][4]))print("D:" + str(t[index][5]))
 
最后,我们读取输入的答案,然后与正确答案进行对比,如果答案正确则什么都不显示直接下一题,如果答案错误则先显示正确答案再显示下一题,通过这种方式来对做题人进行记忆强化。
 最终的效果如下:
 
题库下载 ↓
 高等教育学题库
 高等教育心理学题库
 综合题库
 高等教育学、高等教育心理学、综合三合一题库
相关文章:
用Python实现的高校教师资格考试题库程序
最近朋友参加了高校教师资格考试,在考试前需要刷题来保证通过。但是教资网站上的题库只有接近考试才更新,并且官方题库的刷题效率还是有点低。 👆官方题库的样子 于是想到了是否能够将官方题库内容记录下来,然后自己创建一个高效…...
OpenVINO基本操作流程
环境配置: conda env list:可以查看有哪些环境 conda activate intel:启动某个环境 pip list:可以查看此环境下都下载了哪些软件包 from openvino.inference_engine import IEcore#从OpenVINO推理引擎中导入IECore类 import numpy as np import cv2 1&…...
Spring MVC 注解详解:@RequestBody,@RequestParam 和 @PathVariable
Spring MVC 提供了一系列注解,用于简化请求数据的获取和处理。了解并掌握这些注解的使用,对于开发RESTful API和处理HTTP请求至关重要。本文将详细介绍 RequestBody,RequestParam 和 PathVariable 注解,并附带具体的代码示例&…...
MySQL 8 中的 sql_mode
MySQL 8 中的 sql_mode 设置:提升数据库安全性与性能 在现代数据库管理中,MySQL 是一个广泛使用的开源关系型数据库。随着数据的增长和复杂性增加,良好的数据库配置显得尤为重要。sql_mode 是 MySQL 提供的一个强大功能,它可以帮…...
13种pod的状态
13种pod的状态 生命周期 Pending:Pod被创建后进入调度阶段,k8s调度器依据pod声明的资源请求量和调度规则,为pod挑选一个适合运行的节点。当集群节点不满足pod调度需求时,pod将会处于pending状态。Running:Pod被调度到节点上,k8s将pod调度到节点上后,进入running状态。S…...
2025考研今天开始预报名!攻略请查收
2025年全国硕士研究生招生考试 今天起开始预报名 有什么流程?需要准备哪些信息? 这份考研报名攻略速查收 ↓↓↓ 全国硕士研究生招生考试报名包括网上报名和网上确认两个阶段: 网上预报名时间为10月9日至10月12日(每日9࿱…...
JS中的Promise经典题目解析
这段代码很有代表性,涵盖了多个 JavaScript 知识点,特别是不同异步操作的执行优先级。 async function async1() {console.log(async1 start);await async2();console.log(async1 end); }async function async2() {console.log(async2); }console.log(s…...
【机器学习】金融预测 —— 风险管理与股市预测
我的主页:2的n次方_ 在金融领域,机器学习(ML)已经成为了不可或缺的工具。金融预测,尤其是风险管理和股市预测,涉及海量数据和复杂模式的分析,而这些正是机器学习擅长处理的领域。通过分析历…...
Bootstrap 5 分页组件使用教程
Bootstrap 5 分页组件使用教程 引言 Bootstrap 5 是一个流行的前端框架,它提供了一套丰富的组件和工具,用于快速开发响应式和移动优先的网页。分页组件是 Bootstrap 5 中用于分割长列表或数据集的重要部分,它可以帮助用户更容易地浏览内容。本文将详细介绍如何在您的项目中…...
Linux 安装 NVM 并配置 npm 加速,开发 node 项目不再愁
由于需要在 linux 机器上完成 node 项目的构建,需要安装 nodejs, 想着不同项目需要使用不同的版本,索性安装一下 nvm 吧,因为之前在 windows 上已经安装过 nvm-windows, 应该很容易上手,我尝试了官网提供的几种方式,最…...
MySQL 多条件查询
在 MySQL 中,多条件查询通常使用 WHERE 子句来指定多个条件。这些条件可以通过逻辑运算符(如 AND、OR、NOT)进行组合,以实现复杂的查询需求。以下是一些常见的多条件查询示例: 使用 AND 运算符 AND 运算符用于组合多…...
深度学习模型
1. 引言 在过去的十年间,深度学习的崛起引发了人工智能领域的革命,深刻影响了多个行业。深度学习是一种模仿人脑神经元的工作方式,通过多层神经网络进行数据处理与特征学习。其应用范围从简单的图像识别到复杂的自然语言处理、自动驾驶和医疗…...
Nexpose 6.6.271 发布下载,新增功能概览
Nexpose 6.6.271 for Linux & Windows - 漏洞扫描 Rapid7 Vulnerability Management, release Sep 26, 2024 请访问原文链接:https://sysin.org/blog/nexpose-6/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.or…...
SimpleRAG-v1.0.3:增加文件对话功能
Kimi上有一个功能,就是增加文件之后对话,比如我有如下一个私有文档: 会议主题:《如何使用C#提升工作效率》 参会人员:张三、李四、王五 时间:2024.9.26 14:00-16:00 会议内容: 1. 自动化日常任…...
数学建模算法与应用 第7章 数理统计与方法
目录 7.1 参数估计与假设检验 Matlab代码示例:均值的假设检验 7.2 Bootstrap方法 Matlab代码示例:Bootstrap估计均值的置信区间 7.3 方差分析 Matlab代码示例:单因素方差分析 7.4 回归分析 Matlab代码示例:线性回归 7.5 基…...
【网络】洪水攻击防御指南
洪水攻击防御指南 摘要: 本文深入探讨了洪水攻击的概念、危害以及防御策略。通过Java技术实现,我们将学习如何通过编程手段来增强服务器的安全性。文章不仅提供了详细的技术解读,还包含了实用的代码示例和流程图,帮助读者构建一个…...
应对Redis大Key挑战:从原理到实现
在使用Redis作为缓存或数据存储时,开发者可能会遇到大Key(Big Key)问题。大Key是指在Redis中存储的单个键值对,其值的大小非常大,可能包含大量数据或占用大量内存。大Key问题会导致性能下降、内存消耗过多以及其他潜在…...
网络安全的全面指南
目录 网络安全的全面指南1. 引言2. 网络安全的基本概念3. 网络安全框架4. 常见网络安全攻击及案例4.1 病毒与恶意软件攻击案例4.2 钓鱼攻击案例4.3 DDoS 攻击案例 5. 网络安全最佳实践5.1 强密码策略5.2 定期更新和补丁管理5.3 数据备份与恢复策略 6. 企业网络安全策略6.1 安全…...
前端性能优化全面指南
前端性能优化是提升用户体验的关键,页面加载速度、响应时间和交互流畅度直接影响用户的留存率和满意度。以下是常用的前端性能优化方法,从网络层、资源加载、JavaScript 执行、渲染性能等方面进行全方位优化。 减少 HTTP 请求 合并文件:将多…...
JavaScript-API(倒计时的实现)
基础知识 1.时间对象的使用 1.1 实例化 要获取一个时间首先需要一个关键词new了实例化 const time new Date() 如果是获取具体的具体的时间 const time new Date(2024-6-1 16:06:44) 1.2 日期对象方法 方法作用说明getFullYear()获得年份获得4…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
