当前位置: 首页 > news >正文

linux下使用mpi求自然数和

搭建MPI并行计算环境,编写 MPI程序,求和 1 +2+3+....+1 0000。 要求:

  • 1.使用100个进程;

  • 2.进程0计算1 +2+...+100,

    进程1计算101+ 102+...+ 200,

    .....

    进程99计算9901 + 9902+... +10000;

  • 3.调用计时函数,分别输出每个进程的计算时间;

  • 4.需使用MPI集群通信函数和同步函数

基本概念

解释的很好:MPI 与并行计算入门 - 知乎 (zhihu.com)

安装

下载:Downloads | MPICH

配置文件设置 ./configure --disable-fortran

编译安装 make -j 8; (设置8个进程进行编译会快一些)sudo make install

相关执行脚本:mpic++ mpicc mpirun mpichversion mpiexec mpicxx mpifort mpivars

确保已安装环境gcc 、cmake、gfortran,如下操作

下载mpi压缩包,解压后进行配置:

 配置完后,执行编译安装

添加环境变量,注意这里的路径一定是前面配置时设置的路径,这里踩坑了

vim ~./bashrc 修改后source启用

测试安装完成

 代码编写

#include <stdio.h>
#include <mpi.h>int main(int argc, char *argv[]) {int rank, size;MPI_Init(&argc, &argv);  // 初始化MPI环境MPI_Comm_rank(MPI_COMM_WORLD, &rank);  // 获取进程编号MPI_Comm_size(MPI_COMM_WORLD, &size);  // 获取进程总数if (size != 100) {if (rank == 0) {printf("需要100个进程,请确保启动时指定了100个进程。\n");}MPI_Finalize();return 1;}// 每个进程计算的起点和终点int start = rank * 100 + 1;int end = (rank + 1) * 100;// 计时开始double start_time = MPI_Wtime();// 计算部分和long long local_sum = 0;for (int i = start; i <= end; i++) {local_sum += i;}// 计时结束double end_time = MPI_Wtime();double elapsed_time = end_time - start_time;// 输出每个进程的计算时间printf("进程 %d 计算时间: %f 秒\n", rank, elapsed_time);// 使用MPI_Reduce收集所有部分和,结果存储在进程0long long total_sum = 0;MPI_Reduce(&local_sum, &total_sum, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);// 进程0输出最终总和if (rank == 0) {printf("1 + 2 + ... + 10000 的总和为: %lld\n", total_sum);}MPI_Finalize();  // 结束MPI环境return 0;
}

代码分析

  1. MPI初始化

    • MPI_Init: 初始化MPI环境,所有进程开始运行。
    • MPI_Comm_rank: 获取当前进程的编号(rank)。
    • MPI_Comm_size: 获取总进程数(size)。
  2. 计时函数
    使用MPI_Wtime()计算每个进程的运行时间。

  3. 进程间通信

    • MPI_Reduce: 将所有进程的部分和累加到进程0。
    • MPI_SUM: 指定归约操作为求和。
  4. 同步
    MPI中的MPI_Reduce隐含了同步,因为它会等待所有进程计算完成。

运行方法

假设代码文件名为mpi_sum.c,在终端中执行以下命令:

mpicc mpi_sum.c -o mpi_sum  # 编译代码
mpirun -np 100 ./mpi_sum    # 使用100个进程运行程序

运行结果

相关文章:

linux下使用mpi求自然数和

搭建MPI并行计算环境&#xff0c;编写 MPI程序&#xff0c;求和 1 23....1 0000。 要求: 1.使用100个进程; 2.进程0计算1 2...100, 进程1计算101 102... 200, ..... 进程99计算9901 9902... 10000; 3.调用计时函数,分别输出每个进程的计算时间; 4.需使用MPI集群通信函数和同…...

WebGl学习使用attribute变量绘制一个水平移动的点

在WebGL编程中&#xff0c;attribute变量是一种特殊类型的变量&#xff0c;用于从客户端传递数据到顶点着色器。这些数据通常包括顶点的位置、颜色、纹理坐标等&#xff0c;它们是与每个顶点直接相关的信息。attribute变量在顶点着色器中声明&#xff0c;并且对于每个顶点来说都…...

机器学习四大框架详解及实战应用:PyTorch、TensorFlow、Keras、Scikit-learn

目录 框架概述PyTorch&#xff1a;灵活性与研究首选TensorFlow&#xff1a;谷歌加持的强大生态系统Keras&#xff1a;简洁明了的高层 APIScikit-learn&#xff1a;传统机器学习的必备工具实战案例 图像分类实战自然语言处理实战回归问题实战 各框架的对比总结选择合适的框架 1…...

linux源码安装slurm以及mung和openssl

一、源码安装munge 1、编译安装munge &#xff08;1&#xff09;下载munge地址&#xff1a;https://github.com/dun/munge/releases &#xff08;2&#xff09;解压编译安装&#xff1a; 1 2 3 4 5 6 7 8 创建/data目录 复制文件munge-0.5.15.tar.xz 到/data目录下 tar -Jx…...

分享蓝牙耳机A2DP音频卡顿原因及解决思路

背景 最近一直在更新博客&#xff0c;我觉得写博客有三个好处&#xff0c;一是很多东西时间久了就会忘&#xff0c;记下来方便自己以后回忆和总结&#xff0c;二是记下来可以加深自己对知识的理解&#xff0c;三是可以知识分享&#xff0c;方便他人。 言归正传&#xff0c;今天…...

Mac 下编译 libaom 源码教程

AV1 AV1是一种开放、免版税的视频编码格式&#xff0c;由开放媒体联盟&#xff08;AOMedia&#xff09;开发&#xff0c;旨在提供高压缩效率和优秀的视频质量。AV1支持多种分辨率&#xff0c;包括SD、HD、4K和8K&#xff0c;并适用于视频点播&#xff08;VOD&#xff09;、直播…...

【成品设计】基于Arduino平台的物联网智能灯

《基于Arduino平台的物联网智能灯》 整体功能&#xff1a; 这个任务中要求实现一个物联网智能灯。实际测试环境中要求设备能够自己创建一个热点&#xff0c;连接这个热点后能自动弹出控制界面&#xff08;强制门户&#xff09;。 功能点 基础功能 (60分) 要求作品至少有2个灯…...

安装和配置k8s可视化UI界面dashboard-1.20.6

安装和配置k8s可视化UI界面dashboard-1.20.6 1.环境规划2.初始化服务器1&#xff09;配置主机名2&#xff09;设置IP为静态IP3&#xff09;关闭selinux4&#xff09;配置主机hosts文件5&#xff09;配置服务器之间免密登录6&#xff09;关闭交换分区swap&#xff0c;提升性能7&…...

VLAN:虚拟局域网

VLAN:虚拟局域网 交换机和路由器协同工作后&#xff0c;将原先的一个广播域&#xff0c;逻辑上&#xff0c;切分为多个广播域。 第一步:创建VLAN [SW1]dispaly vlan 查询vlan VID&#xff08;VLAN ID&#xff09;:用来区分和标定不同的vlan 由12位二进制构成 范围: 0-4…...

利用可解释性技术增强制造质量预测模型

概述 论文地址&#xff1a;https://arxiv.org/abs/2403.18731 本研究提出了一种利用可解释性技术提高机器学习&#xff08;ML&#xff09;模型性能的方法。该方法已用于铣削质量预测&#xff0c;这一过程首先训练 ML 模型&#xff0c;然后使用可解释性技术识别不需要的特征并去…...

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling 摘要:引言:背景3 flexMatch3.1 Curriculum Pseudo Labeling3.2 阈值预热3.3非线性映射函数实验4.1 主要结果4.2 ImageNet上的结果4.3收敛速度加速4.4 消融研究5 相关工作摘要: 最近提出的Fi…...

Spring Cloud 3.x 集成eureka快速入门Demo

1.什么是eureka&#xff1f; Eureka 由 Netflix 开发&#xff0c;是一种基于REST&#xff08;Representational State Transfer&#xff09;的服务&#xff0c;用于定位服务&#xff08;服务注册与发现&#xff09;&#xff0c;以实现中间层服务的负载均衡和故障转移&#xff…...

线性代数 矩阵

一、矩阵基础 1、定义 一组数按照矩形排列而成的数表&#xff1b;形似行列式&#xff0c;区别点是 矩阵行列式符号()或[]| |形状方阵或非方阵方阵本质数表数属性A|A|是A诸多属性中的一种维度m *n (m 与n可以相等也可以不相等)n*n 同型矩阵 若A、B两个矩阵都是mn 矩阵&#x…...

【C语言】使用结构体实现位段

文章目录 一、什么是位段二、位段的内存分配1.位段内存分配规则练习1练习2 三、位段的跨平台问题四、位段的应用五、位段使用的注意事项 一、什么是位段 在上一节中我们讲解了结构体&#xff0c;而位段的声明和结构是类似的&#xff0c;它们有两个不同之处&#xff0c;如下&…...

univer实现excel协同

快速入门 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><script src&q…...

JavaScript进阶笔记--深入对象-内置构造函数及案例

深入对象 创建对象三种方式 利用对象字面量new Object&#xff08;{…}&#xff09;利用构造函数 // 1. 字面量创建对象const obj1 {name: pig,age: 18};console.log(obj1); // {name: "pig", age: 18}// 2. 构造函数创建对象function Pig(name, age) {this.name…...

网络爬虫自动化Selenium模拟用户操作

自动化测试和网络爬虫在现代软件开发中占据着重要的位置。它们通过自动化用户操作,减少了人工重复操作的时间成本。Selenium作为一个功能强大且应用广泛的自动化工具,不仅能在不同的浏览器中运行自动化测试,还能进行跨平台测试,并允许与多种编程语言集成。本教程将介绍如何…...

尚硅谷rabbitmq 2024 流式队列2024指定偏移量 第55节答疑

rabbitmq的stream&#xff1a; 4、对比 autoTrackingstrategy方式:始终监听Stream中的新消息(狗狗看家&#xff0c;忠于职守)指定偏移量方式:针对指定偏移量的消息消费之后就停止(狗狗叼飞盘&#xff0c;回来就完) 这两种分别怎么写&#xff1f;java 在 RabbitMQ 中&#xff0c…...

NSSCTF-WEB-pklovecloud

目录 前言 正文 思路 尝试 结尾 前言 许久未见,甚是想念. 今天来解一道有意思的序列化题 正文 思路 <?php include flag.php; class pkshow {function echo_name(){return "Pk very safe^.^";} }class acp {protected $cinder;public $neutron;public $…...

深入Postman- 自动化篇

前言 在前两篇博文《Postman使用 - 基础篇》《玩转Postman:进阶篇》中,我们介绍了 Postman 作为一款专业接口测试工具在接口测试中的主要用法以及它强大的变量、脚本功能,给测试工作人员完成接口的手工测试带来了极大的便利。其实在自动化测试上,Postman 也能进行良好的支…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...