linux下使用mpi求自然数和
搭建MPI并行计算环境,编写 MPI程序,求和 1 +2+3+....+1 0000。 要求:
-
1.使用100个进程;
-
2.进程0计算1 +2+...+100,
进程1计算101+ 102+...+ 200,
.....
进程99计算9901 + 9902+... +10000;
-
3.调用计时函数,分别输出每个进程的计算时间;
-
4.需使用MPI集群通信函数和同步函数
基本概念
解释的很好:MPI 与并行计算入门 - 知乎 (zhihu.com)
安装
下载:Downloads | MPICH
配置文件设置 ./configure --disable-fortran
编译安装 make -j 8; (设置8个进程进行编译会快一些)sudo make install
相关执行脚本:mpic++ mpicc mpirun mpichversion mpiexec mpicxx mpifort mpivars
确保已安装环境gcc 、cmake、gfortran,如下操作

下载mpi压缩包,解压后进行配置:


配置完后,执行编译安装

添加环境变量,注意这里的路径一定是前面配置时设置的路径,这里踩坑了
vim ~./bashrc 修改后source启用

测试安装完成

代码编写
#include <stdio.h>
#include <mpi.h>int main(int argc, char *argv[]) {int rank, size;MPI_Init(&argc, &argv); // 初始化MPI环境MPI_Comm_rank(MPI_COMM_WORLD, &rank); // 获取进程编号MPI_Comm_size(MPI_COMM_WORLD, &size); // 获取进程总数if (size != 100) {if (rank == 0) {printf("需要100个进程,请确保启动时指定了100个进程。\n");}MPI_Finalize();return 1;}// 每个进程计算的起点和终点int start = rank * 100 + 1;int end = (rank + 1) * 100;// 计时开始double start_time = MPI_Wtime();// 计算部分和long long local_sum = 0;for (int i = start; i <= end; i++) {local_sum += i;}// 计时结束double end_time = MPI_Wtime();double elapsed_time = end_time - start_time;// 输出每个进程的计算时间printf("进程 %d 计算时间: %f 秒\n", rank, elapsed_time);// 使用MPI_Reduce收集所有部分和,结果存储在进程0long long total_sum = 0;MPI_Reduce(&local_sum, &total_sum, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);// 进程0输出最终总和if (rank == 0) {printf("1 + 2 + ... + 10000 的总和为: %lld\n", total_sum);}MPI_Finalize(); // 结束MPI环境return 0;
}
代码分析
-
MPI初始化
MPI_Init: 初始化MPI环境,所有进程开始运行。MPI_Comm_rank: 获取当前进程的编号(rank)。MPI_Comm_size: 获取总进程数(size)。
-
计时函数
使用MPI_Wtime()计算每个进程的运行时间。 -
进程间通信
MPI_Reduce: 将所有进程的部分和累加到进程0。MPI_SUM: 指定归约操作为求和。
-
同步
MPI中的MPI_Reduce隐含了同步,因为它会等待所有进程计算完成。
运行方法
假设代码文件名为mpi_sum.c,在终端中执行以下命令:
mpicc mpi_sum.c -o mpi_sum # 编译代码
mpirun -np 100 ./mpi_sum # 使用100个进程运行程序
运行结果

相关文章:
linux下使用mpi求自然数和
搭建MPI并行计算环境,编写 MPI程序,求和 1 23....1 0000。 要求: 1.使用100个进程; 2.进程0计算1 2...100, 进程1计算101 102... 200, ..... 进程99计算9901 9902... 10000; 3.调用计时函数,分别输出每个进程的计算时间; 4.需使用MPI集群通信函数和同…...
WebGl学习使用attribute变量绘制一个水平移动的点
在WebGL编程中,attribute变量是一种特殊类型的变量,用于从客户端传递数据到顶点着色器。这些数据通常包括顶点的位置、颜色、纹理坐标等,它们是与每个顶点直接相关的信息。attribute变量在顶点着色器中声明,并且对于每个顶点来说都…...
机器学习四大框架详解及实战应用:PyTorch、TensorFlow、Keras、Scikit-learn
目录 框架概述PyTorch:灵活性与研究首选TensorFlow:谷歌加持的强大生态系统Keras:简洁明了的高层 APIScikit-learn:传统机器学习的必备工具实战案例 图像分类实战自然语言处理实战回归问题实战 各框架的对比总结选择合适的框架 1…...
linux源码安装slurm以及mung和openssl
一、源码安装munge 1、编译安装munge (1)下载munge地址:https://github.com/dun/munge/releases (2)解压编译安装: 1 2 3 4 5 6 7 8 创建/data目录 复制文件munge-0.5.15.tar.xz 到/data目录下 tar -Jx…...
分享蓝牙耳机A2DP音频卡顿原因及解决思路
背景 最近一直在更新博客,我觉得写博客有三个好处,一是很多东西时间久了就会忘,记下来方便自己以后回忆和总结,二是记下来可以加深自己对知识的理解,三是可以知识分享,方便他人。 言归正传,今天…...
Mac 下编译 libaom 源码教程
AV1 AV1是一种开放、免版税的视频编码格式,由开放媒体联盟(AOMedia)开发,旨在提供高压缩效率和优秀的视频质量。AV1支持多种分辨率,包括SD、HD、4K和8K,并适用于视频点播(VOD)、直播…...
【成品设计】基于Arduino平台的物联网智能灯
《基于Arduino平台的物联网智能灯》 整体功能: 这个任务中要求实现一个物联网智能灯。实际测试环境中要求设备能够自己创建一个热点,连接这个热点后能自动弹出控制界面(强制门户)。 功能点 基础功能 (60分) 要求作品至少有2个灯…...
安装和配置k8s可视化UI界面dashboard-1.20.6
安装和配置k8s可视化UI界面dashboard-1.20.6 1.环境规划2.初始化服务器1)配置主机名2)设置IP为静态IP3)关闭selinux4)配置主机hosts文件5)配置服务器之间免密登录6)关闭交换分区swap,提升性能7&…...
VLAN:虚拟局域网
VLAN:虚拟局域网 交换机和路由器协同工作后,将原先的一个广播域,逻辑上,切分为多个广播域。 第一步:创建VLAN [SW1]dispaly vlan 查询vlan VID(VLAN ID):用来区分和标定不同的vlan 由12位二进制构成 范围: 0-4…...
利用可解释性技术增强制造质量预测模型
概述 论文地址:https://arxiv.org/abs/2403.18731 本研究提出了一种利用可解释性技术提高机器学习(ML)模型性能的方法。该方法已用于铣削质量预测,这一过程首先训练 ML 模型,然后使用可解释性技术识别不需要的特征并去…...
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling 摘要:引言:背景3 flexMatch3.1 Curriculum Pseudo Labeling3.2 阈值预热3.3非线性映射函数实验4.1 主要结果4.2 ImageNet上的结果4.3收敛速度加速4.4 消融研究5 相关工作摘要: 最近提出的Fi…...
Spring Cloud 3.x 集成eureka快速入门Demo
1.什么是eureka? Eureka 由 Netflix 开发,是一种基于REST(Representational State Transfer)的服务,用于定位服务(服务注册与发现),以实现中间层服务的负载均衡和故障转移ÿ…...
线性代数 矩阵
一、矩阵基础 1、定义 一组数按照矩形排列而成的数表;形似行列式,区别点是 矩阵行列式符号()或[]| |形状方阵或非方阵方阵本质数表数属性A|A|是A诸多属性中的一种维度m *n (m 与n可以相等也可以不相等)n*n 同型矩阵 若A、B两个矩阵都是mn 矩阵&#x…...
【C语言】使用结构体实现位段
文章目录 一、什么是位段二、位段的内存分配1.位段内存分配规则练习1练习2 三、位段的跨平台问题四、位段的应用五、位段使用的注意事项 一、什么是位段 在上一节中我们讲解了结构体,而位段的声明和结构是类似的,它们有两个不同之处,如下&…...
univer实现excel协同
快速入门 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><script src&q…...
JavaScript进阶笔记--深入对象-内置构造函数及案例
深入对象 创建对象三种方式 利用对象字面量new Object({…})利用构造函数 // 1. 字面量创建对象const obj1 {name: pig,age: 18};console.log(obj1); // {name: "pig", age: 18}// 2. 构造函数创建对象function Pig(name, age) {this.name…...
网络爬虫自动化Selenium模拟用户操作
自动化测试和网络爬虫在现代软件开发中占据着重要的位置。它们通过自动化用户操作,减少了人工重复操作的时间成本。Selenium作为一个功能强大且应用广泛的自动化工具,不仅能在不同的浏览器中运行自动化测试,还能进行跨平台测试,并允许与多种编程语言集成。本教程将介绍如何…...
尚硅谷rabbitmq 2024 流式队列2024指定偏移量 第55节答疑
rabbitmq的stream: 4、对比 autoTrackingstrategy方式:始终监听Stream中的新消息(狗狗看家,忠于职守)指定偏移量方式:针对指定偏移量的消息消费之后就停止(狗狗叼飞盘,回来就完) 这两种分别怎么写?java 在 RabbitMQ 中,…...
NSSCTF-WEB-pklovecloud
目录 前言 正文 思路 尝试 结尾 前言 许久未见,甚是想念. 今天来解一道有意思的序列化题 正文 思路 <?php include flag.php; class pkshow {function echo_name(){return "Pk very safe^.^";} }class acp {protected $cinder;public $neutron;public $…...
深入Postman- 自动化篇
前言 在前两篇博文《Postman使用 - 基础篇》《玩转Postman:进阶篇》中,我们介绍了 Postman 作为一款专业接口测试工具在接口测试中的主要用法以及它强大的变量、脚本功能,给测试工作人员完成接口的手工测试带来了极大的便利。其实在自动化测试上,Postman 也能进行良好的支…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
