使用 `screen` + `nohup` 实现高效日志记录和多环境任务管理
使用 screen + nohup 实现高效日志记录和多环境任务管理
在深度学习模型训练中,特别是在服务器上运行长时间的任务时,有效的任务管理和日志记录至关重要。我们通常需要在后台运行多个任务,同时为每个任务配置不同的 conda 环境。通过结合使用 screen 和 nohup,我们不仅可以在后台高效运行任务,还可以集中管理日志并实现环境隔离。本指南将重点介绍如何利用 screen + nohup 实现高效的日志记录和任务隔离。
一、使用 screen 配置多个 conda 环境的独立会话
当在服务器上执行多个任务时,不同任务往往依赖不同的环境。通过 screen,我们可以为每个任务创建独立的会话,在不同的 conda 环境中运行各自的任务,避免环境冲突。
步骤
-
创建新的
screen会话并命名:screen -S task_session_name这里的
task_session_name是会话名称,可以根据任务内容自定义。此命令将开启一个新的screen会话。 -
激活特定的
conda环境:在新的
screen会话中,激活任务所需的conda环境。例如:conda activate my_env这样,
task_session_name会话将运行在my_env环境中,后续所有命令都会在该环境下执行,实现了任务环境的独立隔离。
二、利用 nohup 后台执行任务并管理日志
激活特定 conda 环境后,为了让任务在后台持续运行,同时将输出和错误信息记录到日志文件,可以使用 nohup。
nohup python train.py > task_name.log 2>&1 &
命令详解
nohup:使任务在终端关闭后依然继续运行。python train.py:执行训练脚本train.py。>:将标准输出(stdout)重定向到日志文件。task_name.log:日志文件名,用于记录标准输出和错误信息。2>&1:将标准错误输出(stderr)重定向到标准输出,方便集中记录日志。&:将任务置于后台执行,释放会话供其他任务使用。
查看日志
通过 nohup,所有输出都会记录在指定的日志文件中。为实时查看日志内容,通常我们会使用 tail -f 命令:
tail -f task_name.log
该命令允许我们实时监控日志的更新,非常适合单任务的日志跟踪需求。
同时查看多个日志
在多任务的情况下,我们可能需要同时查看多个日志文件。此时可以使用 multitail,它可以在同一窗口内分屏显示多个日志文件,提供一个更直观的实时日志跟踪体验。multitail 需先安装,以下是常见的安装方法:
1. 安装 multitail
-
Debian/Ubuntu 系列:
sudo apt-get install multitail -
RedHat/CentOS 系列:
sudo yum install multitail -
MacOS(使用 Homebrew):
brew install multitail
2. 使用 multitail 查看多个日志
安装 multitail 后,可以通过以下命令在分屏中查看多个日志:
multitail task_A.log task_B.log
此命令会在一个窗口内显示 task_A.log 和 task_B.log 的内容更新,适用于需要同时监控多项任务的场景,如深度学习中不同模型的训练进程、同一模型在不同超参数设置下的训练日志等。
多日志查看的替代方法:并行使用 tail -f
如果不方便安装 multitail,也可以使用 tail -f 的后台运行方式同时监控多个日志文件:
tail -f task_A.log &
tail -f task_B.log &
每个 tail -f 命令会在后台运行并独立显示日志更新。这种方法虽不具备分屏效果,但在有限环境下提供了同时查看多个日志的简单替代方案。
场景示例
- 模型训练日志监控:在实验中,我们可能同时运行多个模型或多组超参数实验。使用
multitail或tail -f同时查看日志,可以随时观察模型的训练进度、验证准确率等输出,便于发现异常情况及时调整。 - 批处理任务监控:在批处理系统中,多个脚本任务可能同时运行,生成不同的日志文件。通过实时查看多日志文件,可以快速识别哪个任务遇到问题并进行调试。
通过这些方式,我们可以高效地监控日志,特别是在并行任务较多的深度学习训练场景下,有助于及时掌握任务状态,优化训练管理流程。
结合 screen 与 nohup 的优势
- 后台稳定运行:任务即使在终端关闭后仍能持续运行。
- 集中日志管理:所有输出和错误信息集中记录在日志文件中,便于后续分析与排查。
- 多环境隔离:每个
screen会话对应不同的conda环境,防止任务间环境冲突。
三、灵活使用 screen 管理不同 Conda 环境的任务
以下是利用 screen 和 nohup 实现多任务管理的完整示例。假设我们有两个不同的训练任务,各自依赖不同的 conda 环境:
示例 1:任务 A
# 创建并进入名为 task_A 的 screen 会话
screen -S task_A# 激活 A 任务所需的 conda 环境
conda activate env_A# 后台运行任务并记录日志
nohup python train_A.py > task_A-参数1=xxx.log 2>&1 &
nohup python train_A.py > task_A-参数1=yyy.log 2>&1 &
示例 2:任务 B
# 创建并进入名为 task_B 的 screen 会话
screen -S task_B# 激活 B 任务所需的 conda 环境
conda activate env_B# 后台运行任务并记录日志
nohup python train_B.py > task_B-参数1=xxx..log 2>&1 &
nohup python train_B.py > task_B-参数2=xxx..log 2>&1 &
通过这种方法,我们可以为每个任务配置独立的 conda 环境,分别记录日志文件,避免任务冲突且便于追踪任务进度。
除了
nohup日志记录,screen也自带日志功能,便于获取会话的实时输出。
可以在
screen会话中执行快捷键Ctrl + A + H,这会将会话输出记录到screenlog.0文件中,适合在 无需分开记录 每个命令日志的简单场景下使用。
四、清理 screen 会话以维护系统整洁
对于习惯使用 screen 的用户,系统中可能积累了许多 Detached(挂起)状态的 screen 会话。为了系统资源的清理和便于管理,我们可以批量退出这些无用的 screen 会话。
1. 清理所有 Detached 状态的 screen 会话
使用以下命令可以批量退出所有挂起的 screen 会话:
screen -ls | grep Detached | awk '{print $1}' | xargs -I {} screen -X -S {} quit
解释
screen -ls:列出所有当前存在的screen会话。grep Detached:筛选出所有处于 Detached 状态的会话(即后台挂起)。awk '{print $1}':提取会话 ID。xargs -I {} screen -X -S {} quit:对每个会话执行quit命令。
这样便能清理掉所有不再使用的 screen 会话,避免了无用会话堆积带来的管理难度。
2. 直接清理 Dead(失效)的 screen 会话
对于已经 Dead 的 screen 会话(通常是因异常退出或崩溃引起的失效会话),可以使用以下命令直接清理:
screen -wipe
该命令会自动清理标记为 Dead 的会话,保持系统整洁并减少资源占用。
五、总结
借助 nohup 和日志文件,我们可以有效地简化深度学习训练任务的管理过程,避免频繁启动 screen 会话带来的复杂性。同时,灵活结合 screen 和不同的 Conda 环境,可以让我们对多个任务及其环境配置进行更高效的管理。
- 只需一次 Conda 环境激活,所有训练任务均可在后台高效执行。
- 日志集中管理:通过
nohup重定向输出,将所有信息记录到日志文件中,方便查看任务进度和排查错误。 - 便于管理多个环境和参数配置:使用
screen为不同任务配置独立的 Conda 环境和参数,所有日志记录清晰明了。 - 及时清理无用的
screen会话:确保系统整洁并减少资源浪费。
希望这篇指南能帮助大家优化训练任务管理流程,提升工作效率。
相关文章:
使用 `screen` + `nohup` 实现高效日志记录和多环境任务管理
使用 screen nohup 实现高效日志记录和多环境任务管理 在深度学习模型训练中,特别是在服务器上运行长时间的任务时,有效的任务管理和日志记录至关重要。我们通常需要在后台运行多个任务,同时为每个任务配置不同的 conda 环境。通过结合使用…...
【探索数字孪生,引领未来技术】
在数字化浪潮的推动下,数字孪生技术正成为连接虚拟与现实的桥梁,它不仅是工业互联网的基石,更是智慧城市、智慧园区、智慧楼宇以及元宇宙构建的核心。为了帮助更多专业人士掌握这一前沿技术,我们荣幸地宣布,“新质技术…...
Tcp_Sever(线程池版本的 TCP 服务器)
Tcp_Sever(线程池版本的 TCP 服务器) 前言1. 功能介绍及展示1.1 服务端连接1.2 客户端连接(可多个用户同时在线连接服务端)1.3 功能服务1.3.1 defaultService(默认服务)1.3.2 transform(大小写转…...
第十一章 Vue生命周期及生命周期的四个阶段
目录 一、引言 1.1. Vue生命周期的具体阶段 1.2. 每个阶段的具体作用和常用场景 1.3. 生命周期钩子函数 二、代码示例 三、运行效果 一、引言 Vue生命周期是指Vue组件实例从创建到销毁的整个过程。在这个过程中,组件经历了一系列的阶段,每个阶段…...
展厅展会客流显示屏的客流统计功能如何实现
随着科技的发展,展厅和展会的管理越来越智能化。客流显示屏作为一种高效的管理工具,能够实时显示参观人数,帮助主办方更好地了解客流情况,优化资源配置。本文将详细介绍展厅展会客流显示屏的客流统计功能如何实现,分为…...
golang正则表达式的使用及举例
正则表达式很强大,在一些场合如抓包,爬虫等方面很有用。在 Go语言中,正则表达式通过标准库 regexp 提供支持。使用正则表达式可以进行字符串匹配、替换和分割等操作。 以下是正则表达式的基本使用方法及示例: 1. 导入 regexp 包 …...
Flutter杂学: iOS 上启用自动填充和关联域
下面是详细的配置和代码,以确保在 iOS 上启用自动填充和关联域(Associated Domains)功能。 配置步骤 1. 在 Apple Developer 控制台中启用 Associated Domains 登录 Apple Developer。导航至您的 App ID 设置页面。找到您要配置的 App ID&…...
接口自动化-框架搭建(Python+request+pytest+allure)
使用代码如何开展接口自动化测试。 一 选择自动化测试用例 业务流程优先,单接口靠后,功能稳定优先,变更频繁不选。 二 搭建自动化测试环境 (1)安装python编译器3.7版本以上--自行安装 (2)安…...
[论文阅读]Constrained Decision Transformer for Offline Safe Reinforcement Learning
Constrained Decision Transformer for Offline Safe Reinforcement Learning Proceedings of the 40th International Conference on Machine Learning (ICML), July 23-29, 2023 https://arxiv.org/abs/2302.07351 泛读只需要了解其核心思想即可。 安全强化学习(Safe Rei…...
工具_Nginx
文章目录 location语法介绍跨域配置https配置http重定向到https配置反向代理配置负载均衡配置upstream配置负载均衡算法(1)rr轮询(默认)(2)wrr加权轮询(weight)(3&#x…...
web开发Model1
WEB开发模式–Model 1 Model1是指基于JSPJavaBean的开发模式,JSP负责web的相关部分,包括数据的展示,请求逻辑的控制等,JavaBean负责业务的逻辑部分,包括数据的存取,业务的实现。 这是我写的一个小项目&…...
ImportError: cannot import name ‘Sequential‘ from ‘keras.models‘
报错信息 ImportError: cannot import name Sequential from keras.models错误代码示例 import tensorflow as tf from keras.models import Sequential # 报错行model Sequential()错误分析 这个错误通常发生在 TensorFlow 和 Keras 的版本不兼容时。TensorFlow 2.x 版本…...
python实战(二)——房屋价格回归建模
一、任务背景 本章将使用一个经典的Kaggle数据集——House Prices - Advanced Regression Techniques进行回归建模的讲解。这是一个房价数据集,与我们熟知的波士顿房价数据集类似,但是特征数量要更多,数据也要更为复杂一些。下面,…...
UHF机械高频头的知识和待学习的疑问
电路图如上所示: 实物开盖清晰图如下: 待学习和弄懂的知识: 这是一个四腔的短路线谐振。分别是输入调谐,放大调谐,变频调谐和本振 第一个原理图输入为75欧(应该是面向有同轴线的天线了)如下图…...
深入理解 SQL 中的 WITH AS 语法
在日常数据库操作中,SQL 语句的复杂性往往会影响到查询的可读性和维护性。为了解决这个问题,Oracle 提供了 WITH AS 语法,这一功能可以极大地简化复杂查询,提升代码的清晰度。本文将详细介绍 WITH AS 的基本用法、优势以及一些实际…...
同三维T80005JEHA-4K60 4K60超高清HDMI/AV解码器
1路HDMI1路CVBS1路3.5音频输出,HDMI支持4K60,支持1路4K60解码,1路高清转码 产品简介: T80005JEHA-4K60是一款4K60超高清解码器,支持1路HDMI/CVBS解码输出,HDMI支持4K60,适用于各种音视频解决方…...
深信服秋季新品重磅发布:安全GPT4.0数据安全大模型与分布式存储EDS新版本520,助力数字化更简单、更安全
10月23日,深信服举办2024秋季新品发布会。发布会上,深信服正式推出了最新的创新成果:实现动静态数据分类分级和数据风险自动研判分析的安全GPT4.0、具备卓越可靠性和AI勒索防护能力的分布式存储EDS新版本520。通过这些新品和能力,…...
Flutter图片控件(七)
1、加载图片 import package:flutter/material.dart;void main() {runApp(const MaterialApp(home: MyHomePage(),)); }class MyHomePage extends StatelessWidget {const MyHomePage({super.key});overrideWidget build(BuildContext context) {return Scaffold(appBar: AppB…...
JavaEE初阶---文件IO总结
文章目录 1.文件初识2.java针对于文件的操作2.1文件系统的操作---file类2.2文件内容的操作---流对象的分类2.4字符流的操作》文本文件2.4.1异常的说明2.4.2第一种文件内容的读取方式2.4.3第二种读取方式2.4.4close的方法的介绍2.4.5close的使用优化操作2.4.6内容的写入 2.3字节…...
10.28Python_pandas_csv
三、读取CSV文件 CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本); CSV 是一…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
Spring AOP代理对象生成原理
代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
6.计算机网络核心知识点精要手册
计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法:数据与控制信息的结构或格式,如同语言中的语法规则语义:控制信息的具体含义和响应方式,规定通信双方"说什么"同步:事件执行的顺序与时序…...
