当前位置: 首页 > news >正文

数据结构之线段树

线段树

线段树(Segment Tree)是一种高效的数据结构,广泛应用于计算机科学和算法中,特别是在处理区间查询和更新问题时表现出色。以下是对线段树的详细解释:

一、基本概念

线段树是一种二叉搜索树,是算法竞赛中常用的用来维护 区间信息 的数据结构。线段树可以在 O(logn) 的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。

原理其实是分治思想。它将整个区间划分成一些单元区间,具有对数级别的高度,从而保证了高效的查询和更新操作。

二、基本结构

  • 根结点:代表整个区间。
  • 内部结点:每个内部结点都代表一个区间,并将其划分为左右两个子区间,分别由左孩子和右孩子表示。
  • 叶结点:代表单元区间,每个叶结点对应原始数据中的一个元素。

对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。

三、示例应用

假设有一个长度为N的数组a,需要频繁地查询任意区间[l,r]的最小值和以及更新数组中的某个元素。使用线段树可以高效地解决这些问题。以下是一个简单的线段树实现示例(以Python代码表示):

class SegmentTree:  def __init__(self, nums):  self.nums = nums  self.n = len(nums)  # 初始化线段树,大小为4倍的原数组长度,因为线段树是完全二叉树  self.tree = [float('inf')] * (4 * self.n)  self.build_tree(0, 0, self.n - 1)  def build_tree(self, tree_index, l, r):  # 如果到达了叶节点  if l == r:  self.tree[tree_index] = self.nums[l]  return  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归构建左右子树  mid = (l + r) // 2  self.build_tree(left_child, l, mid)  self.build_tree(right_child, mid + 1, r)  # 当前节点的值是其左右子节点值的最小值  self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child])  def query(self, l, r):  return self.query_tree(0, 0, self.n - 1, l, r)  def query_tree(self, tree_index, seg_l, seg_r, query_l, query_r):  # 如果查询区间完全包含了当前线段树节点代表的区间  if query_l <= seg_l and seg_r <= query_r:  return self.tree[tree_index]  # 如果查询区间与当前线段树节点代表的区间没有交集  if query_l > seg_r or query_r < seg_l:  return float('inf')  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归查询左右子树,并取最小值  mid = (seg_l + seg_r) // 2  left_min = self.query_tree(left_child, seg_l, mid, query_l, query_r)  right_min = self.query_tree(right_child, mid + 1, seg_r, query_l, query_r)  return min(left_min, right_min)  def update(self, index, value):  self.update_tree(0, 0, self.n - 1, index, value)  def update_tree(self, tree_index, seg_l, seg_r, index, value):  # 如果到达了叶节点  if seg_l == seg_r:  self.nums[index] = value  self.tree[tree_index] = value  return  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归更新左右子树  mid = (seg_l + seg_r) // 2  if index <= mid:  self.update_tree(left_child, seg_l, mid, index, value)  else:  self.update_tree(right_child, mid + 1, seg_r, index, value)  # 当前节点的值是其左右子节点值的最小值  self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child])  # 示例用法  
nums = [1, 3, 2, 7, 9, 11]  
seg_tree = SegmentTree(nums)  # 查询区间[1, 3]的最小值  
print(seg_tree.query(1, 3))  # 输出: 2  # 更新索引2处的值为0  
seg_tree.update(2, 0)  # 再次查询区间[1, 3]的最小值  
print(seg_tree.query(1, 3))  # 输出: 0

相关文章:

数据结构之线段树

线段树 线段树&#xff08;Segment Tree&#xff09;是一种高效的数据结构&#xff0c;广泛应用于计算机科学和算法中&#xff0c;特别是在处理区间查询和更新问题时表现出色。以下是对线段树的详细解释&#xff1a; 一、基本概念 线段树是一种二叉搜索树&#xff0c;是算法竞…...

vue 快速入门

文章目录 一、插值表达式 {{}}二、Vue 指令2.1 v-text 和 v-html&#xff1a;2.2 v-if 和 v-show&#xff1a;2.3 v-on&#xff1a;2.4 v-bind 和 v-model&#xff1a;2.5 v-for&#xff1a; 三、生命周期四、Vue 组件库 Element五、Vue 路由 本文章适用于后端人员&#xff0c;…...

iframe视频宽度高度自适应( pc+移动都可以用,jq写法 )

注意&#xff1a;要引入jquery 可以直接使用弹框播放iframe 一、创建 index.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>.modal {/* 默认隐藏 */display: none;position: fixed;z-i…...

Observability:OpenTelemetry Elastic 分发简介

作者&#xff1a;来自 Elastic Alexander Wert•Miguel Luna•Bahubali Shetti Elastic 自豪地推出了 Elastic Distributions of OpenTelemetry (EDOT)&#xff0c;其中包含 Elastic 版本的 OpenTelemetry Collector 和多种语言 SDK&#xff0c;如 Python、Java、.NET 和 NodeJ…...

golang的RSA加密解密

参考&#xff1a;https://blog.csdn.net/lady_killer9/article/details/118026802 1.加密解密工具类PasswordUtil.go package utilimport ("crypto/rand""crypto/rsa""crypto/x509""encoding/pem""fmt""log"&qu…...

深度学习-梯度消失/爆炸产生的原因、解决方法

在深度学习模型中&#xff0c;梯度消失和梯度爆炸现象是限制深层神经网络有效训练的主要问题之一&#xff0c;这两个现象从本质上来说是由链式求导过程中梯度的缩小或增大引起的。特别是在深层网络中&#xff0c;若初始梯度在反向传播过程中逐层被放大或缩小&#xff0c;最后导…...

MVC(Model-View-Controller)模式概述

MVC&#xff08;Model-View-Controller&#xff09;是一种设计模式&#xff0c;最初由 Trygve Reenskaug 在 1970 年代提出&#xff0c;并在 Smalltalk 编程环境中得到了广泛应用。MVC 模式旨在实现用户界面和业务逻辑的分离&#xff0c;以增强应用程序的可维护性、可扩展性和复…...

数据结构 —— 红黑树

目录 1. 初识红黑树 1.1 红黑树的概念 1.2 红⿊树的规则 1.3 红黑树如何确保最长路径不超过最短路径的2倍 1.4 红黑树的效率:O(logN) 2. 红黑树的实现 2.1 红黑树的基础结构框架 2.2 红黑树的插⼊ 2.2.1 情况1&#xff1a;变色 2.2.2 情况2&#xff1a;单旋变色 2.2…...

《功能高分子学报》

《功能高分子学报》 中国标准连续出版物号:CN 31-1633/O6&#xff0c;国际标准连续出版物号&#xff1a;ISSN 1008-9357&#xff0c;邮发代号&#xff1a;4-629&#xff0c;刊期&#xff1a;双月刊。 《功能高分子学报》主要刊登功能高分子和其他高分子领域具有创新意义的学术…...

Linux特种文件系统--tmpfs文件系统

tmpfs类似于RamDisk&#xff08;只能使用物理内存&#xff09;&#xff0c;使用虚拟内存&#xff08;简称VM&#xff09;子系统的页面存储文件。tmpfs完全依赖VM&#xff0c;遵循子系统的整体调度策略。说白了tmpfs跟普通进程差不多&#xff0c;使用的都是某种形式的虚拟内存&a…...

《基于STMF103的FreeRTOS内核移植》

目录 1.FreeRTOS资料下载与出处 1.1官网下载&#xff0c;网址&#xff1a;www.freertos.org 1.2在正点原子官网&#xff0c;任意STM32F1的开发板资料A盘里&#xff0c; 2.FreeRTOS移植重要文件讲解 2.1 FreeRTOS与FreeRTOS-Plus文件夹 2.2 Demo、Lincence、Source ●Demo文件…...

一七二、Vue3性能优化方式

Vue 3 的性能优化相较于 Vue 2 有了显著提升&#xff0c;利用新特性和改进方法可以更高效地构建和优化应用。以下是 Vue 3 的常见性能优化方法及示例。 1. 使用组合式 API (Composition API) Vue 3 引入的组合式 API&#xff0c;通过逻辑拆分和复用来实现更高效的代码组织和性…...

软件测试--BUG篇

博主主页: 码农派大星. 数据结构专栏:Java数据结构 数据库专栏:MySQL数据库 JavaEE专栏:JavaEE 软件测试专栏:软件测试 关注博主带你了解更多知识 目录 1. 软件测试的⽣命周期 2. BUG 1. BUG 的概念 2. 描述bug的要素 3.bug级别 4.bug的⽣命周期 5 与开发产⽣争执怎…...

Scikit-learn和Keras简介

一&#xff0c;Scikit-learn是一个开源的机器学习库&#xff0c;用于Python编程语言。它建立在NumPy、SciPy和matplotlib这些科学计算库之上&#xff0c;提供了简单有效的数据挖掘和数据分析工具。Scikit-learn库包含了许多用于分类、回归、聚类和降维的算法&#xff0c;包括支…...

python在word的页脚插入页码

1、插入简易页码 import win32com.client as win32 from win32com.client import constants import osdoc_app win32.gencache.EnsureDispatch(Word.Application)#打开word应用程序 doc_app.Visible Truedoc doc_app.Documents.Add() footer doc.Sections(1).Footers(cons…...

Java面试题十四

一、Java中的JNI&#xff08;Java Native Interface&#xff09;是什么&#xff1f;它有什么用途&#xff1f; Java中的JNI&#xff08;Java Native Interface&#xff09;是Java提供的一种编程框架&#xff0c;它允许Java代码与本地&#xff08;Native&#xff09;代码&#x…...

yarn : 无法加载文件,未对文件 进行数字签名。无法在当前系统上运行该脚本。

执行这个命令时报错&#xff1a;yarn --registryhttps://registry.npm.taobao.org yarn : 无法加载文件 C:\Users\Administrator\AppData\Roaming\npm\yarn.ps1。未对文件 C:\Users\Administ rator\AppData\Roaming\npm\yarn.ps1 进行数字签名。无法在当前系统上运行该脚本。有…...

Hadoop——HDFS

什么是HDFS HDFS&#xff08;Hadoop Distributed File System&#xff09;是Apache Hadoop的核心组件之一&#xff0c;是一个分布式文件系统&#xff0c;专门设计用于在大规模集群上存储和管理海量数据。它的设计目标是提供高吞吐量的数据访问和容错能力&#xff0c;以支持大数…...

计算机的一些基础知识

文章目录 编程语言 程序 所谓程序&#xff0c;就是 一组指令 以及 这组指令要处理的数据。狭义上来说&#xff0c;程序对我们来说&#xff0c;通常表现为一组文件。 程序 指令 指令要处理的数据。 编程语言发展 机器语言&#xff1a;0、1 二进制构成汇编语言&#xff1a;…...

学习RocketMQ(记录了个人艰难学习RocketMQ的笔记)

一、部署单点RocketMQ Docker 部署 RocketMQ (图文并茂超详细)_docker 部署rocketmq-CSDN博客 这个博主讲的很好&#xff0c;可食用&#xff0c;替大家实践了一遍 二、原理篇 为什么使用RocketMQ&#xff1a; 为什么选择RocketMQ | RocketMQ 关于一些原理&#xff0c;感觉…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...