数据结构之线段树
线段树
线段树(Segment Tree)是一种高效的数据结构,广泛应用于计算机科学和算法中,特别是在处理区间查询和更新问题时表现出色。以下是对线段树的详细解释:
一、基本概念
线段树是一种二叉搜索树,是算法竞赛中常用的用来维护 区间信息 的数据结构。线段树可以在 ![]()
的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。
原理其实是分治思想。它将整个区间划分成一些单元区间,具有对数级别的高度,从而保证了高效的查询和更新操作。
二、基本结构
- 根结点:代表整个区间。
- 内部结点:每个内部结点都代表一个区间,并将其划分为左右两个子区间,分别由左孩子和右孩子表示。
- 叶结点:代表单元区间,每个叶结点对应原始数据中的一个元素。
对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。
三、示例应用
假设有一个长度为N的数组a,需要频繁地查询任意区间[l,r]的最小值和以及更新数组中的某个元素。使用线段树可以高效地解决这些问题。以下是一个简单的线段树实现示例(以Python代码表示):
class SegmentTree: def __init__(self, nums): self.nums = nums self.n = len(nums) # 初始化线段树,大小为4倍的原数组长度,因为线段树是完全二叉树 self.tree = [float('inf')] * (4 * self.n) self.build_tree(0, 0, self.n - 1) def build_tree(self, tree_index, l, r): # 如果到达了叶节点 if l == r: self.tree[tree_index] = self.nums[l] return # 计算左右子节点的索引 left_child = 2 * tree_index + 1 right_child = 2 * tree_index + 2 # 递归构建左右子树 mid = (l + r) // 2 self.build_tree(left_child, l, mid) self.build_tree(right_child, mid + 1, r) # 当前节点的值是其左右子节点值的最小值 self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child]) def query(self, l, r): return self.query_tree(0, 0, self.n - 1, l, r) def query_tree(self, tree_index, seg_l, seg_r, query_l, query_r): # 如果查询区间完全包含了当前线段树节点代表的区间 if query_l <= seg_l and seg_r <= query_r: return self.tree[tree_index] # 如果查询区间与当前线段树节点代表的区间没有交集 if query_l > seg_r or query_r < seg_l: return float('inf') # 计算左右子节点的索引 left_child = 2 * tree_index + 1 right_child = 2 * tree_index + 2 # 递归查询左右子树,并取最小值 mid = (seg_l + seg_r) // 2 left_min = self.query_tree(left_child, seg_l, mid, query_l, query_r) right_min = self.query_tree(right_child, mid + 1, seg_r, query_l, query_r) return min(left_min, right_min) def update(self, index, value): self.update_tree(0, 0, self.n - 1, index, value) def update_tree(self, tree_index, seg_l, seg_r, index, value): # 如果到达了叶节点 if seg_l == seg_r: self.nums[index] = value self.tree[tree_index] = value return # 计算左右子节点的索引 left_child = 2 * tree_index + 1 right_child = 2 * tree_index + 2 # 递归更新左右子树 mid = (seg_l + seg_r) // 2 if index <= mid: self.update_tree(left_child, seg_l, mid, index, value) else: self.update_tree(right_child, mid + 1, seg_r, index, value) # 当前节点的值是其左右子节点值的最小值 self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child]) # 示例用法
nums = [1, 3, 2, 7, 9, 11]
seg_tree = SegmentTree(nums) # 查询区间[1, 3]的最小值
print(seg_tree.query(1, 3)) # 输出: 2 # 更新索引2处的值为0
seg_tree.update(2, 0) # 再次查询区间[1, 3]的最小值
print(seg_tree.query(1, 3)) # 输出: 0
相关文章:
数据结构之线段树
线段树 线段树(Segment Tree)是一种高效的数据结构,广泛应用于计算机科学和算法中,特别是在处理区间查询和更新问题时表现出色。以下是对线段树的详细解释: 一、基本概念 线段树是一种二叉搜索树,是算法竞…...
vue 快速入门
文章目录 一、插值表达式 {{}}二、Vue 指令2.1 v-text 和 v-html:2.2 v-if 和 v-show:2.3 v-on:2.4 v-bind 和 v-model:2.5 v-for: 三、生命周期四、Vue 组件库 Element五、Vue 路由 本文章适用于后端人员,…...
iframe视频宽度高度自适应( pc+移动都可以用,jq写法 )
注意:要引入jquery 可以直接使用弹框播放iframe 一、创建 index.html <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>.modal {/* 默认隐藏 */display: none;position: fixed;z-i…...
Observability:OpenTelemetry Elastic 分发简介
作者:来自 Elastic Alexander Wert•Miguel Luna•Bahubali Shetti Elastic 自豪地推出了 Elastic Distributions of OpenTelemetry (EDOT),其中包含 Elastic 版本的 OpenTelemetry Collector 和多种语言 SDK,如 Python、Java、.NET 和 NodeJ…...
golang的RSA加密解密
参考:https://blog.csdn.net/lady_killer9/article/details/118026802 1.加密解密工具类PasswordUtil.go package utilimport ("crypto/rand""crypto/rsa""crypto/x509""encoding/pem""fmt""log"&qu…...
深度学习-梯度消失/爆炸产生的原因、解决方法
在深度学习模型中,梯度消失和梯度爆炸现象是限制深层神经网络有效训练的主要问题之一,这两个现象从本质上来说是由链式求导过程中梯度的缩小或增大引起的。特别是在深层网络中,若初始梯度在反向传播过程中逐层被放大或缩小,最后导…...
MVC(Model-View-Controller)模式概述
MVC(Model-View-Controller)是一种设计模式,最初由 Trygve Reenskaug 在 1970 年代提出,并在 Smalltalk 编程环境中得到了广泛应用。MVC 模式旨在实现用户界面和业务逻辑的分离,以增强应用程序的可维护性、可扩展性和复…...
数据结构 —— 红黑树
目录 1. 初识红黑树 1.1 红黑树的概念 1.2 红⿊树的规则 1.3 红黑树如何确保最长路径不超过最短路径的2倍 1.4 红黑树的效率:O(logN) 2. 红黑树的实现 2.1 红黑树的基础结构框架 2.2 红黑树的插⼊ 2.2.1 情况1:变色 2.2.2 情况2:单旋变色 2.2…...
《功能高分子学报》
《功能高分子学报》 中国标准连续出版物号:CN 31-1633/O6,国际标准连续出版物号:ISSN 1008-9357,邮发代号:4-629,刊期:双月刊。 《功能高分子学报》主要刊登功能高分子和其他高分子领域具有创新意义的学术…...
Linux特种文件系统--tmpfs文件系统
tmpfs类似于RamDisk(只能使用物理内存),使用虚拟内存(简称VM)子系统的页面存储文件。tmpfs完全依赖VM,遵循子系统的整体调度策略。说白了tmpfs跟普通进程差不多,使用的都是某种形式的虚拟内存&a…...
《基于STMF103的FreeRTOS内核移植》
目录 1.FreeRTOS资料下载与出处 1.1官网下载,网址:www.freertos.org 1.2在正点原子官网,任意STM32F1的开发板资料A盘里, 2.FreeRTOS移植重要文件讲解 2.1 FreeRTOS与FreeRTOS-Plus文件夹 2.2 Demo、Lincence、Source ●Demo文件…...
一七二、Vue3性能优化方式
Vue 3 的性能优化相较于 Vue 2 有了显著提升,利用新特性和改进方法可以更高效地构建和优化应用。以下是 Vue 3 的常见性能优化方法及示例。 1. 使用组合式 API (Composition API) Vue 3 引入的组合式 API,通过逻辑拆分和复用来实现更高效的代码组织和性…...
软件测试--BUG篇
博主主页: 码农派大星. 数据结构专栏:Java数据结构 数据库专栏:MySQL数据库 JavaEE专栏:JavaEE 软件测试专栏:软件测试 关注博主带你了解更多知识 目录 1. 软件测试的⽣命周期 2. BUG 1. BUG 的概念 2. 描述bug的要素 3.bug级别 4.bug的⽣命周期 5 与开发产⽣争执怎…...
Scikit-learn和Keras简介
一,Scikit-learn是一个开源的机器学习库,用于Python编程语言。它建立在NumPy、SciPy和matplotlib这些科学计算库之上,提供了简单有效的数据挖掘和数据分析工具。Scikit-learn库包含了许多用于分类、回归、聚类和降维的算法,包括支…...
python在word的页脚插入页码
1、插入简易页码 import win32com.client as win32 from win32com.client import constants import osdoc_app win32.gencache.EnsureDispatch(Word.Application)#打开word应用程序 doc_app.Visible Truedoc doc_app.Documents.Add() footer doc.Sections(1).Footers(cons…...
Java面试题十四
一、Java中的JNI(Java Native Interface)是什么?它有什么用途? Java中的JNI(Java Native Interface)是Java提供的一种编程框架,它允许Java代码与本地(Native)代码&#x…...
yarn : 无法加载文件,未对文件 进行数字签名。无法在当前系统上运行该脚本。
执行这个命令时报错:yarn --registryhttps://registry.npm.taobao.org yarn : 无法加载文件 C:\Users\Administrator\AppData\Roaming\npm\yarn.ps1。未对文件 C:\Users\Administ rator\AppData\Roaming\npm\yarn.ps1 进行数字签名。无法在当前系统上运行该脚本。有…...
Hadoop——HDFS
什么是HDFS HDFS(Hadoop Distributed File System)是Apache Hadoop的核心组件之一,是一个分布式文件系统,专门设计用于在大规模集群上存储和管理海量数据。它的设计目标是提供高吞吐量的数据访问和容错能力,以支持大数…...
计算机的一些基础知识
文章目录 编程语言 程序 所谓程序,就是 一组指令 以及 这组指令要处理的数据。狭义上来说,程序对我们来说,通常表现为一组文件。 程序 指令 指令要处理的数据。 编程语言发展 机器语言:0、1 二进制构成汇编语言:…...
学习RocketMQ(记录了个人艰难学习RocketMQ的笔记)
一、部署单点RocketMQ Docker 部署 RocketMQ (图文并茂超详细)_docker 部署rocketmq-CSDN博客 这个博主讲的很好,可食用,替大家实践了一遍 二、原理篇 为什么使用RocketMQ: 为什么选择RocketMQ | RocketMQ 关于一些原理,感觉…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
