Matplotlib | 条形图中的每个条形(patch)设置标签数据的方法
方法一
·不使用子图对象如何给形图中的每个条形设置数据
plt.figure(figsize=(8, 4))
sns.countplot(x='Workout_Frequency (days/week)', data=df)plt.title('会员每周锻炼频率分布')
plt.xlabel('锻炼频率 (每周次数)')
plt.ylabel('人数')# 获取当前活动的轴对象
ax = plt.gca()# 循环遍历条形图中的每个条形(patch)
for p in ax.patches:# 使用 annotate 方法在每个条形上方标注频数ax.annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()),ha='center', va='center', fontsize=10, color='green', xytext=(0, 5),textcoords='offset points')

方法二
import matplotlib.pyplot as plt
import seaborn as sns# 创建一个画布,并设置大小
plt.figure(figsize=(10, 8))# 创建一个子图对象 ax5
ax5 = plt.subplot(111) # 这里使用 1x1 网格的第一个位置# 绘制条形图
sns.countplot(x='Workout_Frequency (days/week)', data=df)# 设置标题和轴标签
plt.title('会员每周锻炼频率分布')ax5.set_xlabel('锻炼频率 (每周次数)')
ax5.set_ylabel('人数')# 循环遍历条形图中的每个条形(patch)
for p in ax5.patches:# 使用 annotate 方法在每个条形上方标注频数ax5.annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()),ha='center', va='center', fontsize=11, color='green', xytext=(0, 5),textcoords='offset points')# 显示图表
plt.show()
-
代码解读
循环标注频数: -
for p in ax5.patches: 循环遍历条形图中的每个条形(patch)。
-
ax5.annotate(f’{p.get_height()}', (p.get_x() + p.get_width() / 2., p.get_height()), …):
- 使用
annotate方法在每个条形上方标注频数。 - f’{p.get_height()}’ 是要标注的文本,即条形的高度。
- (p.get_x() + p.get_width() / 2., p.get_height()) 是标注的位置,位于条形的中心上方。
- ha=‘center’, va=‘center’ 设置水平和垂直对齐方式。
- fontsize=11 设置字体大小。
- color=‘black’ 设置字体颜色。
- xytext=(0, 5) 设置文本偏移量,使标注稍微向上偏移,避免与条形顶部重叠。
- textcoords=‘offset points’ 指定偏移量的坐标系统。
- 使用
相关文章:
Matplotlib | 条形图中的每个条形(patch)设置标签数据的方法
方法一 不使用子图对象如何给形图中的每个条形设置数据 plt.figure(figsize(8, 4)) sns.countplot(xWorkout_Frequency (days/week), datadf)plt.title(会员每周锻炼频率分布) plt.xlabel(锻炼频率 (每周次数)) plt.ylabel(人数)# 获取当前活动的轴对象 ax plt.gca()# 循环遍…...
机器学习3_支持向量机_线性不可分——MOOC
线性不可分的情况 如果训练样本是线性不可分的,那么上一节问题的是无解的,即不存在 和 满足上面所有N个限制条件。 对于线性不可分的情况,需要适当放松限制条件,使得问题有解。 放松限制条件的基本思路: 对每个训…...
bash: git: command not found
在windows上重新安装Git之后,遇到cmd可以使用git命令,但是git bash中使用的git命令的时候,会提示: $ git bash: git: command not found 解决办法 找到用户目录下的.bash_profile和.bashrc文件,编辑打开,找…...
大模型LLama3!!!Ollama下载、部署和应用(保姆级详细教程)
首先呢,大家在网站先下载ollama软件 这就和anaconda和python是一样的 废话不多说 直接上链接:Download Ollama on Windows 三个系统都支持 注意: 这里的Models,就是在上面,大家点开之后,里面有很多模型…...
ReactPress系列—NestJS 服务端开发流程简介
ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,感谢Star。 NestJS 服务端开发流程简介 NestJS 是一个用于构建高效、可靠和可扩展的服务器端应用程序的框架。它使用 TypeScript(但也支持纯 Java…...
Maven 下载配置 详解 我的学习笔记
Maven 下载配置 详解 我的学习笔记 一、Maven 简介二、maven安装配置三、maven基本使用四、idea配置mavenidea配置maven环境maven坐标idea创建maven项目配置Maven-Helper插件 五、依赖管理 一、Maven 简介 Apache Maven 是一个项目管理和构建工具,它基于项目对象模型…...
【学术精选】SCI期刊《Electronics》特刊“New Challenges in Remote Sensing Image Processing“
英文名称:New Challenges in Remote Sensing Image Processing 中文名称:"遥感图像处理的新挑战"特刊 期刊介绍 “New Challenges in Remote Sensing Image Processing”特刊隶属于《Electronics》期刊,聚焦遥感图像处理领域快速…...
卷积神经网络——pytorch与paddle实现卷积神经网络
卷积神经网络——pytorch与paddle实现卷积神经网络 本文将深入探讨卷积神经网络的理论基础,并通过PyTorch和PaddlePaddle两个深度学习框架来展示如何实现卷积神经网络模型。我们将首先介绍卷积神经网络、图像处理的基本概念,这些理论基础是理解和实现卷…...
云平台虚拟机运维笔记整理,使用libvirt创建和管理虚拟机,以及开启虚拟机嵌套,虚拟磁盘扩容,物理磁盘扩容等等
云平台虚拟机运维笔记整理,使用libvirt创建和管理虚拟机,以及开启虚拟机嵌套,虚拟磁盘扩容,物理磁盘扩容等等。 掌握和使用qemu和libvirt,分别使用它们创建一个cirros虚拟机,并配置好网络。 宿主机node0的系统为ubuntu16,IP为192.168.56.200。 qemu和libvirt简介 QEMU…...
最佳实践:如何实现函数参数之间的TS类型相依赖和自动推断
引入 最近在开发一款极致优雅的前端状态管理库AutoStore时碰到这样一个问题。 拟实现Field组件,该组件相关类型简化代码如下: type Field (props:{validate,render:(props:{value,isValid}) })该组件,具有validate和render两个属性: 其中…...
Linux基础指令1
好久没写博客了,这次我将重新做人,每星期都更,做不到的话直接倒立洗头。最近在学Linux,感觉很厉害的样子,先浅学一下再弄数据结构去。 Linux的基本操作是通过指令来执行的,所以我们先来学习下指令。 1.简…...
软件设计师:排序算法总结
一、直接插入 排序方式:从第一个数开始,拿两个数比较,把后面一位跟前面的数比较,把较小的数放在前面一位 二、希尔 排序方式:按“增量序列(步长)”分组比较,组内元素比较交换 假设…...
「Mac畅玩鸿蒙与硬件25」UI互动应用篇2 - 计时器应用实现
本篇将带领你实现一个实用的计时器应用,用户可以启动、暂停或重置计时器。该项目将涉及时间控制、状态管理以及按钮交互,是掌握鸿蒙应用开发的重要步骤。 关键词 UI互动应用时间控制状态管理用户交互 一、功能说明 在这个计时器应用中,用户…...
计算机专业开题报告写法,该怎么写好?
不会写开题报告,或者想要一些论文模版的,欢迎评论,会第一时间给大家。 题报告是计算机专业大学毕业生在开展毕业设计或论文研究前,对研究课题进行详细介绍和计划的重要环节。作为开题者对科研课题的一种文字说明,开题…...
Vue(JavaScript)读取csv表格并求某一列之和(大浮点数处理: decimal.js)
文章目录 想要读这个表格,并且求第二列所有价格的和方法一:通过添加文件输入元素上传csv完整(正确)代码之前的错误部分因为价格是小数,所以下面的代码出错。如果把parseFloat改成parseInt,那么求和没有意义…...
Pyraformer复现心得
Pyraformer复现心得 引用 Liu, Shizhan, et al. “Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting.” International conference on learning representations. 2021. 代码部分 def long_forecast(self, x_enc, x_m…...
成绩排序c++
说明 给出了班里某门课程的成绩单,请你按成绩从高到低对成绩单排序输出,如果有相同分数则名字字典序小的在前。 输入格式 第一行为nn(0<n<200<n<20),表示班里的学生数目; 接下来的nn行,每行为每个学生的名字和他的…...
人脸检测之MTCNN算法网络结构
MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和关键点检测的深度学习模型,特别适合在复杂背景下识别出多尺度的人脸。它通过多任务学习来实现人脸检测和人脸关键点定位(如眼睛、鼻子、嘴巴的位置&#x…...
蓝桥杯顺子日期(填空题)
题目:小明特别喜欢顺子。顺子指的就是连续的三个数字:123、456 等。顺子日期指的就是在日期的 yyyymmdd 表示法中,存在任意连续的三位数是一个顺子的日期。例如 20220123 就是一个顺子日期,因为它出现了一个顺子:123&a…...
Java云HIS医院管理系统源码 病案管理、医保业务、门诊、住院、电子病历编辑
云HIS系统优势 (1)客户/用户角度 无需安装,登录即用 多终端同步,轻松应对工作环境转换 系统使用简单、易上手,信息展示主次分明、重点突出 极致降低用户操作负担:关联功能集中、减少跳转,键盘快…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
