当前位置: 首页 > news >正文

大数据机器学习算法与计算机视觉应用02:线性规划

Linear Programming

  • Definition of linear programming
  • max and min-cost max flow
  • linear program to solve minimax optimal strategies in games
  • Algoithms for linear programming
  • l1 regression
  • Seidel’s 2-dimensional linear programming algorithm

linear program 线性规划

线性规划包含以下几个特征:

  1. 包含 n n n个变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,,xn
  2. 所有的限制条件都是变量的线性组合
  3. 目标函数也是这些变量的线性组合并且求最大值
  4. 没有乘积

所有的限制条件都满足是大于等于(小于等于)的话,这个线性规划称为是有边界的,否则就是没有边界的。
对于一些没有边界的线性规划,目标函数可能没有最大值。

max and min-cost max flow最大流

Modeling Network Flow

网络流模型是一种常见的算法模型,其主要包含以下几个组成部分:

  1. 变量:对于每条边 ( u , v ) (u,v) (u,v), f u v f_{uv} fuv表示这条边的流的大小
  2. 目标:最大化最终节点 T T T接收到的流
  3. 限制条件:
    • 每条边上的流不能超过这条边的承载能力(每条边上的流存在最大值)
    • 除了源点 S S S和最终节点 T T T之外,其他节点进入的流量总和等于输出的流量总和。

一个例子如下:
网络流图

min-cost max flow 最小开销最大流

每条边 ( u , v ) (u,v) (u,v)都有一个最大负载 c ( u , v ) c(u,v) c(u,v)和成本 w ( u , v ) w(u,v) w(u,v),目标则是设法让每条边流量和单位成本的乘积总和最小,也就是
min ⁡ ∑ ( u , v ) ∈ E w ( u , v ) f u v \min \sum\limits_{(u,v)\in E}^ {} w(u,v)f_{uv} min(u,v)Ew(u,v)fuv

这个问题如何解决呢?

第一种方法:先求最大流 f f f,然后优化目标函数。

第二种方法:连接终点和源点 ( T , S ) (T,S) (T,S)并让这条边的单位成本为一个很大的负值,这样计算目标函数的同时就保证了最大流。

review: Zero Sum Game

之前的零和博弈和我们刚刚的最大流问题有点相似。他们都有如下的共同点:

变量:一堆变量说明:在零和博弈中是执行各种动作的概率,在最大流问题中是每条边的流量。

目标:都是变量的线性组合。在零和博弈中,是概率和对应收益乘积的总和(收益给定),在最大流问题中,是通往终点所有流量的总和。

约束条件:也是变量的线性组合。

Linear Program to solve minimax optimal strategies in games

线性规划的一般形式如下:

目标函数: c ⃗ T X ⃗ \vec{c}^T\vec{X} c TX

约束条件: A X ⃗ ≤ b A\vec{X} \leq b AX b

每个约束条件都将变量的向量空间的超平面分割成两个半平面,多个半平面的交集被称为可行域

如果可行域是空集,说明该线性规划是不可行的。线性规划可以是没有边界的,但是一般都是可行的,否则目标函数无解。

一般来说,可行域都是一个凸集。这保证可行域一般只有唯一解。

Algorithms for Linear Programming

常见的线性规划算法包括:

  • Simplex Algorithm 单纯形法:这种方法简单使用,但是在最坏情况下需要指数时间复杂度。
  • Ellipsoid Algorithm 椭球算法:具有多项式的时间复杂度,但是实际运行较慢
  • Karmarkar’s Algorithm(interior point) 卡马卡算法:同样多项式的时间复杂度,而且运行较快

这里不做详细算法解释,只做大致介绍。

Simplex Algorithm

单纯形法从可行域的一个顶点开始,依次和附近的点比较,如果发现新的最大值,就进行迁移。

Ellipsoid algorithm

椭球算法将目标函数替换为一个约束条件,并且使用二分查找方法。

Karmarkar’s algorithm

卡马卡方法又被称作内部点方法,它寻找最优解的方法并非从可行域边界的一个顶点出发,而是从可行域内部的一个点开始。

L1 Regression

线性回归是另外一种形式的线性规划,它的背景是求解向量方程 A x ⃗ = b ⃗ \mathbf{A}\vec{x} = \vec{b} Ax =b

在许多情况下,这个方程是没有精确解的,这个时候我们转而去计算最接近的解,也就是要求
min ⁡ Σ i = 1 , … , n ∣ A x ⃗ − b ⃗ ∣ \min\Sigma_{i=1,\dots,n}|\mathbf{A}\vec{x}-\vec{b}| minΣi=1,,nAx b 对应的 x ⃗ \vec{x} x

为什么这是一种线性规划?

我们可以将线性回归视作如下表述:对 A \mathbf{A} A的每一行 A i \mathbf{A_i} Ai,都有约束条件
A i x ⃗ − b i ≤ s i \mathbf{A_i}\vec{x}-b_i \leq s_i Aix bisi

A i x ⃗ − b i ≥ − s i \mathbf{A_i}\vec{x}-b_i \geq -s_i Aix bisi
目标函数则是求
min ⁡ Σ i = 1 , … , n s i \min \Sigma_{i=1,\dots,n}s_i minΣi=1,,nsi
对于线性回归问题,我们一般使用的是最小二乘法,这里不再赘述了。

Seidel’s 2-dimensional linear programming algorithm

在解决一个二维线性规划问题时,以下的一个算法可以作为参考:

假设约束条件是 a i x ∗ ⃗ ≤ b i a_i\vec{x^*}\leq b_i aix bi
我们递归寻找 a 2 x ∗ ⃗ ≤ b 2 , … , a m x ∗ ⃗ ≤ b m a_2\vec{x^*}\leq b_2,\dots,a_m\vec{x^*}\leq b_m a2x b2,,amx bm的对应最优解。
接下来,对应 a 1 a_1 a1有两种情况:

  1. 先前的最优解满足新的约束条件,那么先前的最优解就是整体最优解,时间复杂度很明显是 O ( 1 ) O(1) O(1)
  2. 新的约束条件给出了新的最优解。这个时候需要计算新的最优解,遍历新的约束条件和先前 m − 1 m-1 m1个约束条件的交点依次计算是否最优,时间复杂度是 O ( m ) O(m) O(m)

那么这个算法总共的时间复杂度满足:
T ( m ) = T ( m − 1 ) + O ( m ) T(m) = T(m-1)+O(m) T(m)=T(m1)+O(m)
可得该算法的最坏时间复杂度是 O ( m 2 ) O(m^2) O(m2)

我们能不能优化以下,让这个算法的期望时间复杂度变为 O ( m ) O(m) O(m)呢?这就是Seidel算法。

(注意,这里的算法一般不指代高斯-赛德尔迭代法,后者一般用于运动学求数值解)。

Seidel’s Algorithm 非常简单,就是在随机排列上述的约束条件后进行相同的递归算法。那么,为什么随机排布一下之后,这个算法的期望时间复杂度就变成了 O ( m ) O(m) O(m)呢?原因就是,随机排布之后,第二种遍历的情况大大减少了。

我们知道最优解一定在两条约束条件 a i , a j a_i,a_j ai,aj的交点上,那么其中一个在最新的这一步出现的概率是多少呢?
很明显概率是:
2 × ( m − 1 ) ! ( m ) ! = 2 m 2 \times \frac{(m-1)!}{(m)!} = \frac{2}{m} 2×(m)!(m1)!=m2
因此每步递归的期望时间复杂度为:
( 1 − 2 m ) O ( 1 ) + 2 m O ( m ) = O ( 1 ) (1-\frac{2}{m})O(1) + \frac{2}{m}O(m) = O(1) (1m2)O(1)+m2O(m)=O(1)
总算法的期望时间复杂度为:
T ( m ) = T ( m − 1 ) + O ( 1 ) T ( m ) = O ( m ) T(m) = T(m-1) + O(1) T(m) = O(m) T(m)=T(m1)+O(1)T(m)=O(m)

相关文章:

大数据机器学习算法与计算机视觉应用02:线性规划

Linear Programming Definition of linear programmingmax and min-cost max flowlinear program to solve minimax optimal strategies in gamesAlgoithms for linear programmingl1 regressionSeidel’s 2-dimensional linear programming algorithm linear program 线性规…...

godot——主题、Theme、StyleBox

我刚开始被这些术语吓到了,一直不敢去接触它们,都用的默认样式。现在好不容易有点思路了,记录下来。 下面看看怎么自定义样式。 1.先新建一个Theme 2.再次点击创建好的Theme 得到 图1 这样一个面板。(看不懂没事,继…...

深入理解接口测试:实用指南与最佳实践5.0(一)

✨博客主页: https://blog.csdn.net/m0_63815035?typeblog 💗《博客内容》:.NET、Java.测试开发、Python、Android、Go、Node、Android前端小程序等相关领域知识 📢博客专栏: https://blog.csdn.net/m0_63815035/cat…...

SQL面试题——飞猪SQL面试 重点用户

飞猪SQL面试题—重点用户 在一些场景中我们经常听到这样的一些描述,例如20%的用户贡献了80%的销售额,或者是20%的人拥有着80%的财富,你知道这样的数据是怎么算出来的吗 数据如下,uid 是用户的id ,amount是用户的消费金额 |uid|amount| ---…...

Angular 和 Vue2.0 对比

前言 :“业精于勤,荒于嬉;行成于思,毁于随” 很久没写博客了,大多记录少进一步探查。 Angular 和 Vue2.0 对比: 一.概念 1.1 Angular 框架: 是一款由谷歌开发的开源web前端框架(核…...

websocket服务器(协程风格)--swoole进阶篇

swoole的websocket服务器(协程风格)示例真不算友善,从头了解到尾,那还好,但是谁有那么多时间从头到尾了解。示例不够针对性,写websocket就该单独写websocket的东西,偏偏又加上http的东西。这里我来解读一下websocket服务器(协程风格)示例 <?php use Swoole\Http\…...

Windows C/C++ Socket 编程

承接上文&#xff1a;socket 编程 本文目录 Windows Client 端WSADATA 结构体WSAStartup() 函数SOCKET 以及 socket() 函数sockaddr_ininet_pton() 函数in_addr structmemcpy()connect() 函数send() 函数recv() 函数 Windows Server 端 在进行 socket 编程之前&#xff0c;你要…...

计算两个结构的乘法

在行列可自由变换的平面上&#xff0c;2点结构有3个 3点结构有6个 计算2*2 2a1*2a14a6 2a1*2a24a8 2a1*2a34a12 显然2a1*2a14a6因为这3个结构都分布在同一列上&#xff0c;就是整数乘法。2a1*2a2的结果有2种写法&#xff0c;一种外形像2a1细节为2a2&#xff0c;一种外形为2…...

学校服务器连接pycharm配置2

上一个可能还是有点问题&#xff0c;因为实际在跑的时候读取的其实是本地的anaconda&#xff0c;这个重新整了一下流程 首先在学校服务器先激活自己创建的虚拟环境&#xff0c;这里就不截图了 然后在pycharm里面打开设置 选择这个python解释器 这里有添加解释器 选择SSH …...

AI赋能电商:创新应用提升销售与用户体验

目录 一、引言 二、AI技术在电商领域的创新应用 三、AI技术提高电商销售效率和用户体验的实践路径 一、引言 随着人工智能&#xff08;AI&#xff09;技术的不断成熟&#xff0c;电商行业正迎来一场深刻的变革。AI技术在购物推荐、会员分类、商品定价等方面的创新应用&…...

详解kafka消息发送重试机制的案例

在 Kafka 生产者中实现消息发送的重试机制&#xff0c;可以通过配置 KafkaProducer 的相关属性来实现。以下是一些关键的配置项&#xff1a; retries&#xff1a;设置生产者发送失败后重试的次数。 retry.backoff.ms&#xff1a;设置生产者在重试前等待的时间。 buffer.memo…...

linux文本管理!!!

文章目录 第1章 文本过滤/查看命令1.echo&#xff1a;输出文本2.cat&#xff1a;合并文件或查看文件内容3.head&#xff1a;显示文件头部信息4.tail&#xff1a;显示文件尾部信息5.wc: 统计文本行号6.less&#xff1a;分页显示文件内容7.grep&#xff1a;文本过滤工具8.定向符号…...

软件设计师-计算机体系结构分类

计算机体系结构分类 Flynn分类法 根据不同的指令流数据流组织方式分类单指令流但数据流SISD,单处理器系统单指令多数据流SIMD&#xff0c;单指令流多数据流是一种采用一个控制器来控制多个处理器&#xff0c;同时对一组数据&#xff08;又称“数据矢量”&#xff09;中的每一…...

《基于深度学习的车辆行驶三维环境双目感知方法研究》

复原论文思路&#xff1a; 《基于深度学习的车辆行驶三维环境双目感知方法研究》 1、双目测距的原理 按照上述公式算的话&#xff0c;求d的话&#xff0c;只和xl-xr有关系&#xff0c;这样一来&#xff0c;是不是只要两张图像上一个测试点的像素位置确定&#xff0c;对应的深…...

jwt用户登录,网关给微服务传递用户信息,以及微服务间feign调用传递用户信息

1、引入jwt依赖 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></dependency> 2、Jwt工具类&#xff0c;生成token以及解析token package com.niuniu.gateway.uti…...

ubontu安装anaconda

1.下载 Anaconda 安装脚本 2. 复制到服务器上/home/username文件夹中&#xff0c;进入文件夹&#xff0c;执行&#xff1a; bash Anaconda3-2024.10-1-Linux-x86_64.sh一直按回车&#xff0c;然后输入yes同意协议。 3. 初始化 Anaconda 环境&#xff0c;会自动配置环境变量&a…...

【Docker容器化技术】docker安装与配置、常用命令、容器数据卷、应用部署实战、Dockerfile、服务编排docker-compose、私有仓库

文章目录 一、Docker的安装与配置1、docker概述2、安装docker3、docker架构4、配置镜像加速器 二、Docker命令1、服务相关命令2、镜像相关命令3、容器相关命令 三、Docker容器数据卷1、数据卷概念及作用2、配置数据卷3、配置数据卷容器 四、Docker应用部署实战1、部署MySQL2、部…...

Python模拟A卷实操题

1.某机械公司生产两种产品。A的单件利润分别是100元&#xff0c;B的单件利润是150元。 每种产品由三种材料构成&#xff0c;现给出每种材料的库存&#xff08;库存小于100000&#xff09;&#xff0c;求利润最大的生产方案。输入说明&#xff1a;第一行给出生产每件A产品所需要…...

Leetcode 检测相邻递增子数组

3349. 检测相邻递增子数组 I 给你一个由 n 个整数组成的数组 nums &#xff0c;请你找出 k 的 最大值&#xff0c;使得存在 两个 相邻 且长度为 k 的 严格递增 子数组 。具体来说&#xff0c;需要检查是否存在从下标 a 和 b (a < b) 开始的 两个 子数组&#xff0c;并满…...

rockylinux 8安装 gcc11.2

方法 1&#xff1a;从源代码编译安装最新版本的 GCC 下载 GCC 源代码&#xff1a; 访问 GCC 官方网站下载最新版本的源代码&#xff0c;例如&#xff1a; wget https://ftp.gnu.org/gnu/gcc/gcc-11.2.0/gcc-11.2.0.tar.gz tar -xf gcc-11.2.0.tar.gz cd gcc-11.2.0安装依赖项&a…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...