当前位置: 首页 > news >正文

Spring AI Alibaba 快速入门

Spring AI Alibaba 实现了与阿里云通义模型的完整适配,接下来,我们将学习如何使用 spring ai alibaba 开发一个基于通义模型服务的智能聊天应用。

一、快速体验示例

注意:因为 Spring AI Alibaba 基于 Spring Boot 3.x 开发,因此本地 JDK 版本要求为 17 及以上。

  1. 下载项目 运行以下命令下载源码,进入 helloworld 示例目录:

    git clone --depth=1 https://github.com/alibaba/spring-ai-alibaba.git
    cd spring-ai-alibaba/spring-ai-alibaba-examples/helloworld-example

  2. 运行项目 首先,需要获取一个合法的 API-KEY 并设置 AI_DASHSCOPE_API_KEY 环境变量,可跳转 阿里云百炼平台 了解如何获取 API-KEY。

    export AI_DASHSCOPE_API_KEY=${REPLACE-WITH-VALID-API-KEY}

    启动示例应用:

    ./mvnw compile exec:java -Dexec.mainClass="com.alibaba.cloud.ai.example.helloworld.HelloWorldExampleApplication"

    访问 http://localhost:8080/ai/chat?input=给我讲一个笑话吧,向通义模型提问并得到回答。

二、示例开发指南

以上示例本质上就是一个普通的 Spring Boot 应用,我们来通过源码解析看一下具体的开发流程。

  1. 添加依赖

    首先,需要在项目中添加 spring-ai-alibaba-starter 依赖,它将通过 Spring Boot 自动装配机制初始化与阿里云通义大模型通信的 ChatClientChatModel 相关实例。

     
    <dependency><groupId>com.alibaba.cloud.ai</groupId><artifactId>spring-ai-alibaba-starter</artifactId><version>1.0.0-M2.1</version></dependency>

    注意:由于 spring-ai 相关依赖包还没有发布到中央仓库,如出现 spring-ai-core 等相关依赖解析问题,请在您项目的 pom.xml 依赖中加入如下仓库配置。

     

    <repositories>

    <repository>

    <id>spring-milestones</id>

    <name>Spring Milestones</name>

    <url>https://repo.spring.io/milestone</url>

    <snapshots>

    <enabled>false</enabled>

    </snapshots>

    </repository>

    </repositories>

  2. 注入 ChatClient

    接下来,在普通 Controller Bean 中注入 ChatClient 实例,这样你的 Bean 就具备与 AI 大模型智能对话的能力了。

    @RestController@RequestMapping("/ai")public class ChatController {private final ChatClient chatClient;public ChatController(ChatClient.Builder builder) {this.chatClient = builder.build();}@GetMapping("/chat")public String chat(String input) {return this.chatClient.prompt().user(input).call().content();}}

    以上示例中,ChatClient 调用大模型使用的是默认参数,Spring AI Alibaba 还支持通过 DashScopeChatOptions 调整与模型对话时的参数,DashScopeChatOptions 支持两种不同维度的配置方式:

    1. 全局默认值,即 ChatClient 实例初始化参数

      可以在 application.yaml 文件中指定 spring.ai.dashscope.chat.options.* 或调用构造函数 ChatClient.Builder.defaultOptions(options)DashScopeChatModel(api, options) 完成配置初始化。

    2. 每次 Prompt 调用前动态指定

      ChatResponse response = chatModel.call(new Prompt("Generate the names of 5 famous pirates.",DashScopeChatOptions.builder().withModel("qwen-plus").withTemperature(0.4F).build()));

      关于 DashScopeChatOptions 配置项的详细说明,请查看参考手册。

三、开发实例:RAG介绍

检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。

通过从更多数据源添加背景信息,以及通过训练来补充 LLM 的原始知识库,检索增强生成能够提高搜索体验的相关性。这能够改善大型语言模型的输出,但又无需重新训练模型。额外信息源的范围很广,从训练 LLM 时并未用到的互联网上的新信息,到专有商业背景信息,或者属于企业的机密内部文档,都会包含在内。

RAG 对于诸如回答问题和内容生成等任务,具有极大价值,因为它能支持生成式 AI 系统使用外部信息源生成更准确且更符合语境的回答。它会实施搜索检索方法(通常是语义搜索或混合搜索)来回应用户的意图并提供更相关的结果。

下图是一个RAG链路的两个阶段,包括Indexing pipeline阶段和RAG的阶段。

img_1.png

从上图可以看到, indexing pipeline的阶段主要是将结构化或者非结构化的数据或文档进行加载和解析、chunk切分、文本向量化并保存到向量数据库。 RAG的阶段主要包括将prompt文本内容转为向量、从向量数据库检索内容、对检索后的文档chunk进行重排和prompt重写、最后调用大模型进行结果的生成。

 

1、RAG调用

引入依赖:

<?xml version="1.0" encoding="UTF-8"?><!--Copyright 2023-2024 the original author or authors.Licensed under the Apache License, Version 2.0 (the "License");you may not use this file except in compliance with the License.You may obtain a copy of the License athttps://www.apache.org/licenses/LICENSE-2.0Unless required by applicable law or agreed to in writing, softwaredistributed under the License is distributed on an "AS IS" BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the License for the specific language governing permissions andlimitations under the License.
--><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.3.3</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.alibaba.cloud.ai</groupId><artifactId>rag-example</artifactId><version>0.0.1-SNAPSHOT</version><name>rag-example</name><description>Demo project for Spring AI Alibaba</description><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><maven-deploy-plugin.version>3.1.1</maven-deploy-plugin.version><!-- Spring AI --><spring-ai-alibaba.version>1.0.0-M3.2</spring-ai-alibaba.version><spring-ai.version>1.0.0-M3</spring-ai.version><!-- utils --><commons-lang3.version>3.14.0</commons-lang3.version></properties><dependencies><dependency><groupId>com.alibaba.cloud.ai</groupId><artifactId>spring-ai-alibaba-starter</artifactId><version>${spring-ai-alibaba.version}</version></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-lang3</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-pdf-document-reader</artifactId><version>${spring-ai.version}</version></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-elasticsearch-store-spring-boot-starter</artifactId><version>${spring-ai.version}</version></dependency></dependencies><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-deploy-plugin</artifactId><version>${maven-deploy-plugin.version}</version><configuration><skip>true</skip></configuration></plugin></plugins></build><repositories><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository></repositories></project>

知识库内容导入

下边是将pdf文档导入到知识库的代码

DashScopeApi dashscopeApi = ...;// 1. 解析文档和chunk切分
String filePath = "新能源产业有哪些-36氪.pdf";
DashScopeDocumentCloudReader reader = new DashScopeDocumentCloudReader(filePath, dashscopeApi, null);
List<Document> documentList = reader.get();
DashScopeDocumentTransformer transformer = new DashScopeDocumentTransformer(dashscopeApi);
List<Document> transformerList = transformer.apply(documentList);
System.out.println(transformerList.size());// 2. 文档向量化
DashScopeEmbeddingModel embeddingModel = new DashScopeEmbeddingModel(dashscopeApi);
Document document = new Document("你好阿里云");
float[] vectorList = embeddingModel.embed(document);// 3. 导入文档内容到向量存储
DashScopeCloudStore cloudStore = new DashScopeCloudStore(dashscopeApi, new DashScopeStoreOptions("bailian-knowledge"));
cloudStore.add(Arrays.asList(document));// 4. 删除文档
cloudStore.delete(Arrays.asList(document.getId()));

 知识问答

下边代码将根据之前创建的知识库,进行知识问答的代码:

DocumentRetriever retriever = new DashScopeDocumentRetriever(dashscopeApi, DashScopeDocumentRetrieverOptions.builder().withIndexName("bailian-knowledge").build());ChatClient chatClient = ChatClient.builder(dashscopeChatModel).defaultAdvisors(new DocumentRetrievalAdvisor(retriever)).build();ChatResponse response = chatClient.prompt().user("如何快速开始百炼?").call().chatResponse();
String content = response.getResult().getOutput().getContent();
Assertions.assertNotNull(content);logger.info("content: {}", content);

如果需要返回检索召回后,模型采纳和引用的文档内容, 可以通过以下代码实现:

DocumentRetriever retriever = new DashScopeDocumentRetriever(dashscopeApi,DashScopeDocumentRetrieverOptions.builder().withIndexName("spring-ai知识库").build());ChatClient chatClient = ChatClient.builder(dashscopeChatModel).defaultAdvisors(new DashScopeDocumentRetrievalAdvisor(retriever, true)).build();ChatResponse response = chatClient.prompt().user("如何快速开始百炼?").call().chatResponse();String content = response.getResult().getOutput().getContent();
Assertions.assertNotNull(content);
logger.info("content: {}", content);//获取引用的内容
List<Document> documents = (List<Document>) response.getMetadata().get(DashScopeDocumentRetrievalAdvisor.RETRIEVED_DOCUMENTS);
Assertions.assertNotNull(documents);for (Document document : documents) {logger.info("referenced doc name: {}, title: {}, score: {}", document.getMetadata().get("doc_name"),document.getMetadata().get("title"), document.getMetadata().get("_score"));}

相关文章:

Spring AI Alibaba 快速入门

Spring AI Alibaba 实现了与阿里云通义模型的完整适配&#xff0c;接下来&#xff0c;我们将学习如何使用 spring ai alibaba 开发一个基于通义模型服务的智能聊天应用。 一、快速体验示例 注意&#xff1a;因为 Spring AI Alibaba 基于 Spring Boot 3.x 开发&#xff0c;因此…...

Docker Registry(镜像仓库)详解

Docker Registry&#xff08;镜像仓库&#xff09;详解 Docker Registry&#xff0c;即Docker镜像仓库&#xff0c;是Docker生态系统中一个至关重要的组件。它负责存储、管理和分发Docker镜像&#xff0c;为Docker容器提供镜像资源。本文将深入探讨Docker Registry的功能、结构…...

RTOS学习笔记---“二值信号量”和“互斥信号量”

在实时操作系统&#xff08;RTOS&#xff09;中&#xff0c;“二值信号量”和“互斥信号量”是两种常见的同步机制&#xff0c;用于线程之间的协调与资源管理。尽管它们有相似之处&#xff0c;都基于信号量概念&#xff0c;但它们的用途和行为存在重要区别。 1. 二值信号量&…...

Oracle-物化视图基本操作

-- 物化视图 -- 与普通视图的区别&#xff1a;真实存在数据的 普通视图的数据在基表 物化视图看成是, 一个定时运行的计算JOB一个存计算结果的表 创建时生成数据&#xff1a; 分为两种&#xff1a;build immediate 和 build deferred&#xff0c; build immediate是在创…...

(功能测试)测试报告

其中的统计分析和测试结果确认是必须要有的&#xff1b; 测试过程回顾&#xff1a;测试的时间和阶段&#xff0c;是否出现延期&#xff0c;与预期的任务计划是否匹配&#xff1b; &#xff01;统计分析&#xff1a;统计写多少用例&#xff0c;用例覆盖情况如何&#xff08;100%…...

【LeetCode每日一题】——746.使用最小花费爬楼梯

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 数组 二【题目难度】 简单 三【题目编号】 746.使用最小花费爬楼梯 四【题目描述】 给你一…...

程序里sendStringParametersAsUnicode=true的配置导致sql server cpu使用率高问题处理

一 问题描述 近期生产环境几台sql server从库cpu使用率总是打满&#xff0c;发现抓的带变量值的慢sql&#xff0c;手动代入变量值执行并不慢&#xff0c;秒级返回&#xff0c;不知道问题出在哪里。 二 问题排查 用扩展事件或者sql profiler抓慢sql&#xff0c;抓到了变量值&…...

Vue3 el-table 默认选中 传入的数组

一、效果&#xff1a; 二、官网是VUE2 现更改为Vue3写法 <template><el-table:data"tableData"border striperow-key"id"ref"tableRef":cell-style"{ text-align: center }":header-cell-style"{background: #b7babd…...

最后一个单词的长度

题目详情&#xff1a; 解题思路&#xff1a; 用两个变量分别存储当前值和上次值&#xff0c;就可保证当前移动时记录字符个数&#xff0c;当遇到空格时&#xff0c;这次值保存到上次值&#xff0c;并清空。 代码解析&#xff1a; /* 最后一个单词的长度 */ #include <st…...

2024-11-19 kron积

若A[a11 a12; a21 a22]; B[b11 b12; b21 b22]; 则C[a11*b11 a12*b11 a21*b11 a22*b11; a11*b12 a12*b12 a21*b12 a22*b12; a11*b21 a12*b21 a21*b21 a22*b21; a11*b22 a12*b22 a21*b22 a22*b22] 用MATLAB实现 方法1&#xff1a; A [a11 a12; a21 a22]; B [b11 b12; b21 b22]…...

Redis ⽀持哪⼏种数据类型?适⽤场景,底层结构

目录 Redis 数据类型 一、String&#xff08;字符串&#xff09; 二、Hash&#xff08;哈希&#xff09; 三、List&#xff08;列表&#xff09; 四、Set&#xff08;集合&#xff09; 五、ZSet(sorted set&#xff1a;有序集合) 六、BitMap 七、HyperLogLog 八、GEO …...

树莓派2 安装raspberry os 并修改成固定ip

安装 安装raspberry os 没啥说的&#xff0c;到树莓派官网&#xff0c;下载制作启动映像盘的软件&#xff1a; https://www.raspberrypi.com/software/ 下载后&#xff0c;直接安装该软件&#xff0c;然后运行&#xff0c;选择好开发板的型号和操作系统型号&#xff0c;按照…...

11月第3周AI资讯

阅读时间:3-4min 更新时间:2024.9.9-2024.9.13 目录 DIAMOND:扩散模型在世界构建中的应用 阿里云推出Qwen2.5-Turbo:高效长文本处理,性价比卓越 微软:AI已实现几乎无限的记忆 Comfyui_Object_Migration一致性换衣模型 DeepSeek发布R1-Lite-Preview:推理AI竞争愈发…...

一次封装,解放双手:Requests如何实现0入侵请求与响应的智能加解密

引言 之前写了 Requests 自动重试的文章&#xff0c;突然想到&#xff0c;之前还用到过 Requests 自动加解密请求的逻辑&#xff0c;分享一下。之前在做逆向的时候&#xff0c;发现一般医院的小程序请求会这么玩&#xff0c;请求数据可能加密也可能不加密&#xff0c;但是返回…...

Notepad++--在开头快速添加行号

原文网址&#xff1a;Notepad--在开头快速添加行号_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Notepad怎样在开头快速添加行号。 需求 原文件 想要的效果 方法 1.添加点号 Alt鼠标左键&#xff0c;从首行选中首列下拉&#xff0c;选中需要添加序号的所有行的首列&#xff…...

Python和MATLAB示例临床因素分析

&#x1f335;Python片段 为了演示临床因素的分析&#xff0c;让我们模拟一个数据集并执行一些基本的统计和机器学习分析。我们将重点关注以下步骤&#xff1a; 模拟数据集&#xff1a;创建具有年龄、性别、BMI、吸烟状况和疾病结果等特征的临床数据。描述性统计&#xff1a;…...

嵌入式硬件实战基础篇(二)-稳定输出3.3V的太阳能电池-无限充放电

引言&#xff1a;本内容主要用作于学习巩固嵌入式硬件内容知识&#xff0c;用于想提升下述能力&#xff0c;针对学习稳压芯片和电容以及电池之间的运用&#xff0c;对于硬件PCB以及原理图的练习和前面硬件篇的实际运用&#xff1b;太阳能是一种清洁、可再生的能源&#xff0c;广…...

【数据结构】树——链式存储二叉树的基础

写在前面 书接上文&#xff1a;【数据结构】树——顺序存储二叉树 本篇笔记主要讲解链式存储二叉树的主要思想、如何访问每个结点、结点之间的关联、如何递归查找每个结点&#xff0c;为后续更高级的树形结构打下基础。不了解树的小伙伴可以查看上文 文章目录 写在前面 一、链…...

STM32-- keil常见报错与解决办法

调试问题 1. keil在线调试需要点击好几次运行才可以运行&#xff0c;要是直接下载程序直接就不运行。 解决&#xff1a;target里面的use microlib要勾选&#xff0c;因为使用了printf。 keil在线调试STM32&#xff0c;点三次运行才能跑到main的问题解决。 keil在线调试STM32…...

【大数据学习 | Spark-Core】RDD的概念与Spark任务的执行流程

1. RDD的设计背景 在实际应用中&#xff0c;存在许多迭代式计算&#xff0c;这些应用场景的共同之处是&#xff0c;不同计算阶段之间会重用中间结果&#xff0c;即一个阶段的输出结果会作为下一个阶段的输入。但是&#xff0c;目前的MapReduce框架都是把中间结果写入到HDFS中&…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...