Ubuntu24.04配置STMTrack
项目地址:https://github.com/fzh0917/STMTrack
一、安装 CUDA
参考链接:
 Ubuntu24.04配置DINO-Tracker
 Ubuntu多CUDA版本安装及切换
 由于之前在其他项目中已经安装了 CUDA12.1,这次需要安装另一个版本。
1. 查看安装版本
按照 requirement.txt 中的要求,CUDA的版本为10.0,torch版本高于1.4。在 pytorch 官网上查看对应版本:
 
 这里可以看到 pytorch1.4 对应 torchvision0.5,对应 CUDA10.1。
2. 安装CUDA
1) 下载安装包
下载地址: https://developer.nvidia.com/cuda-toolkit
 历史版本下载地址: https://developer.nvidia.com/cuda-toolkit-archive
 
 
 依次执行两条指令。
 安装过程中如果提示 gcc 版本不匹配导致安装失败,需要在指令后添加--override。
 安装过程中注意不安装驱动,提示“A symlink already exists at /usr/local/cuda. Update to this installation?”选择 No。
2) 创建软链接
参考链接:
 anzhuang
 Ubuntu多CUDA版本安装及切换
 由于我电脑中已经存在了一个 12.1 版本,CUDA 软链接是指向 12.1 的。上面那个选项选了 yes 会改变 CUDA 的软链接。
- 查看当前使用的 CUDA版本
 在/usr/local路径下通过stat cuda命令查看当前使用的 CUDA 版本:
- 删除原本的 CUDA 软链接
sudo rm -rf /usr/local/cuda
- 建立新的指向 CUDA-10.1 的软链接
sudo ln -s /usr/local/cuda-10.1 /usr/local/cuda
-  重新查看当前 CUDA 版本 
  
-  检查是否添加到环境变量 
sudo gedit ~/.bashrc
在最后确认有没有下面这几行内容
export PATH=/usr/local/cuda/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda
如果没有,将其添加到~/.bashrc的最后,然后运行命令
source ~/.bashrc
使配置的环境变量生效。
3. 安装 cudnn
1) 下载对应版本cudnn
官网
 
2) cd到cudnn所在的文件夹下进行解压等操作:
tar -zxvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include/ 
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64/ 
sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*cd /usr/local/cuda-10.0/lib64/
sudo ln -sf libcudnn.so.7.4.2 libcudnn.so.7
4. 新建环境
conda create -n STMTrack python=3.7 -y
conda activate STMTrack
二、安装 torch
参考链接:
- Ubuntu18.04+Cuda10.1+Python3.6 下安装 PyTorch1.4.0+torchvision0.5.0,成功安装torch1.4.0和torchvision并解决安装速度过慢
- ubuntu linux安装pytorch和torchvision
1. 添加镜像源安装(失败)

2. 使用 whl 文件安装(成功)
1) 下载镜像
镜像网址:https://download.pytorch.org/whl/torch_stable.html
 
 
 
2) 安装
在whl文件目录打开终端,输入:
pip install torch-1.4.0+cu100-cp36-cp36m-linux_x86_64.whlpip install torchvision-0.5.0+cu100-cp36-cp36m-linux_x86_64.whl

3) 检查是否安装成功
pythonimport torch
print(torch.version.cuda)
print(torch.backends.cudnn.version())
三、安装其他库
在项目地址打开终端,运行:
pip install -r requirements.txt
四、实验设置
参考链接:
- 把STMTrack跑起来
- CVPR2021跟踪算法STMTrack的配置
1. 预训练模型下载
在got上训练的https://drive.google.com/file/d/1AT6SAieig8oNQ-MJ6dUhCfgYCyJEdxfj/view
 在全部数据集上训练的https://drive.google.com/file/d/1w7nhGZR53FQnh3fVbIcbj08hxa2Zjvub/view
 将下载的预训练模型放入工程目录下新建的pretrain_model路径中
2. 其他设置
- 在STMTrack-main/experiments/stmtrack/test/目录下对 otb,uav,got 等数据集进行配置,以 uav 为例,打开STMTrack/experiments/stmtrack/test/UAV123/stmtrack-googlenet-uav123.yaml
 1). 更改预训练模型所在路径
 pretrain_model_path: "/root/STMTrack/epoch-19_fulldata.pkl",注意冒号与双引号之间有一个空格,提醒一下,要看一下原来文件中的与训练文件写的是 fulldata.pk1 还是 gotdata.pk1,改成对应文件的路径
 2). 更改 device_num
 好像是可用于计算任务的 GPU 数量,这里原代码中为10,我改为了1,可以通过以下方式在终端查询:
python
import torch
print(torch.cuda.device_count())

 3). 添加数据集所在路径
 在yaml 文件的最后一行添加数据集的路径 data_root: “数据集的绝对路径”
 
 4). 下载 uav123.json 和 lasot.json
 链接:git clone https://github.com/megvii-research/video_analyst/tree/master/videoanalyst/evaluation/got_benchmark/datasets 。
 下载好后放入/videoanalyst/evaluation/got_benchmark/datasets
3.测试代码
在终端输入:
python main/test.py --config testing_dataset_config_file_path
或直接在test.py中添加默认 config 路径。
五、问题
RuntimeError: CUDA error: no kernel image is available for execution on the device
经过查阅,大部分帖子都说是 CUDA 版本和 torch 版本不匹配造成的,但我这个应该是匹配的:
python
import torch
print(torch.__version__)
# 显示torch和cuda版本
print(torch.cuda.is_available())
# 显示True

 也有人说是由于算力和 CUDA 不匹配造成的,但是在浏览的过程中发现大家提到的由于算力不匹配导致的 CUDA erroe 似乎会详细提示算力不匹配,但我这里也没有提示,而且输入:
torch.ones((1, 1, 1, 1, 1)).cuda()
输出:
tensor([[[[[1.]]]]], device='cuda:0')
这算是能够调用成功?所以我也不太确定是不是算力问题导致的。按照这位大佬的方法,在 .bashrc 文件中改了算力也没用。
我的显卡为 RTX4090,在浏览的过程中发现有人说 4090 对应的最低 CUDA 版本为 11.8,有人说是 11.7, 在官方文档中查看 CUDA 与 算力的对应关系,没看懂,似乎是与 cudnn 有关?但是这个问题我始终不知道怎么改,抱着试试的心态重新配置了一个环境 CUDA11.7+torch1.13.0+torchvision0.14.0,配置完成后直接运行 test.py,成功。
 
相关文章:
 
Ubuntu24.04配置STMTrack
项目地址:https://github.com/fzh0917/STMTrack 一、安装 CUDA 参考链接: Ubuntu24.04配置DINO-Tracker Ubuntu多CUDA版本安装及切换 由于之前在其他项目中已经安装了 CUDA12.1,这次需要安装另一个版本。 1. 查看安装版本 按照 requireme…...
 
【Java学习笔记】Map接口和常用方法
一、 Map接口实现类的 特点[很实用] key是自己存的java对象 value是一个固定的 //当有相同的 k ,就等价于替换. 二、 Map常用方法 (根据键–>k) 三、Map接口遍历方法 package com.hspedu.map_; import java.util.*; /** * author 韩顺平 * ver…...
uniapp支持App横竖屏开发总结
一、需求: app要支持重力感应自动切换横竖屏,并切换后样式不能错乱 二、实现 官方文档 官方Git manifest.json文件中 "app-plus" : {"screenOrientation" : ["portrait-primary","portrait-secondary","…...
 
【工作笔记】Lombok版本变化导致的反序列化异常
Lombok版本变化导致的反序列化异常 背景 因为安全性的考虑,最近在梳理旧系统的系统依赖。改动依赖时候还好,毕竟只是换掉不再合作公司的旧依赖,没敢动别的太多东西。不过没多久,测试团队就找来了… 排查问题之第一次跑偏 旧系…...
 
多模态大语言模型 MLLM 部署微调实践
1 MLLM 1.1 什么是 MLLM 多模态大语言模型(MultimodalLargeLanguageModel)是指能够处理和融合多种不同类型数据(如文本、图像、音频、视频等)的大型人工智能模型。这些模型通常基于深度学习技术,能够理解和生成多种模…...
 
LNMP和Discuz论坛
文章目录 LNMP和Discuz论坛1 LNMP搭建1.1 编译安装nginx服务1.1.1 编译安装1.1.2 添加到系统服务 1.2 编译安装MySQL服务1.2.1 准备工作1.2.2 编辑配置文件1.2.3 设置路径环境变量1.2.4 数据库初始化1.2.5 添加mysqld系统服务1.2.6 修改mysql的登录密码 1.3 编译安装PHP服务1.3…...
 
Cadence学习笔记 2 PCB封装绘制
基于Cadence 17.4,四层板4路HDMI电路 更多Cadence学习笔记:Cadence学习笔记 1 原理图库绘制 目录 2、PCB封装绘制 2、PCB封装绘制 封装尺寸如下。 用Allegro做PCB封装前,要先做焊盘(Allegro 比AD、PADS多一个步骤:绘制…...
 
网络安全——防火墙
基本概念 防火墙是一个系统,通过过滤传输数据达到防止未经授权的网络传输侵入私有网络,阻止不必要流量的同时允许必要流量进入。防火墙旨在私有和共有网络间建立一道安全屏障,因为网上总有黑客和恶意攻击入侵私有网络来破坏,防火…...
 
【CSS in Depth 2 精译_074】第 12 章 CSS 排版与间距概述 + 12.1 间距设置(下):行内元素的间距设置
当前内容所在位置(可进入专栏查看其他译好的章节内容) 第四部分 视觉增强技术 ✔️【第 12 章 CSS 排版与间距】 ✔️ 12.1 间距设置 12.1.1 使用 em 还是 px12.1.2 对行高的深入思考12.1.3 行内元素的间距设置 ✔️ 12.2 Web 字体12.3 谷歌字体 文章目…...
 
短视频矩阵抖音SEO源码OEM独立部署
短视频优化矩阵源码涉及对抖音平台上的视频内容进行筛选与排序,目的是增强其在搜索引擎中的可见度,以便更多用户能够浏览到这些视频。而抖音SEO优化系统则是通过构建一个分析框架,来解析抖音上的用户数据、视频信息及标签等元素,并…...
 
使用docker快速部署Nginx、Redis、MySQL、Tomcat以及制作镜像
文章目录 应用快速部署NginxRedisMySQLTomcat 制作镜像镜像原理基于已有容器创建使用 Dockerfile 创建镜像指令说明构建应用创建 Dockerfile 文件创建镜像 应用快速部署 Nginx docker run -d -p 80:80 nginx使用浏览器访问虚拟机地址 Redis docker pull redis docker run --…...
 
在ensp中ACL路由控制实验
一、实验目的 掌握ACL路由控制管理 二、实验要求 要求: 配置路由策略,左右两边不公开区域对方不可达,其他区域可以互相ping通 设备: 1、三台路由器 2、四台交换机 3、四台电脑 4、四台服务器 使用ensp搭建实验环境,如图所…...
μC/OS-Ⅱ源码学习(3)---事件模型
快速回顾 μC/OS-Ⅱ中的多任务 μC/OS-Ⅱ源码学习(1)---多任务系统的实现 μC/OS-Ⅱ源码学习(2)---多任务系统的实现(下) 本文开始,进入事件源码的学习。 事件模型 在一个多任务系统里,各个任务在系统的统筹下相继执行,由于执行速度极快&a…...
 
Jmeter进阶篇(30)深入探索 JMeter 监听器
前言 在性能测试领域里,Apache JMeter 是一款经典而强大的工具,而其中的监听器(Listeners)组件更是发挥着不可或缺的关键作用。 监听器就像敏锐的观察者,默默记录测试执行过程中的各种数据,作为系统性能分析的数据依据。 本文将带你全方位走进 JMeter 监听器的奇妙世界,…...
虚幻引擎的工程目录结构
虚幻引擎的工程目录结构如下: .idea/.vs:用于IDE(如IntelliJ IDEA或Visual Studio)的项目配置文件,包含工程设置和解决方案文件。 Binaries:存放编译后的可执行文件和相关的动态链接库(DLL&…...
深度学习中的yield
以下为例: def data_iter(batch_size, features, labels):num_examples len(features)indices list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices …...
 
数据库数据恢复—ORACLE常见故障有哪些?如何恢复数据?
Oracle数据库常见故障表现: 1、ORACLE数据库无法启动或无法正常工作。 2、ORACLE ASM存储破坏。 3、ORACLE数据文件丢失。 4、ORACLE数据文件部分损坏。 5、ORACLE DUMP文件损坏。 Oracle数据库数据恢复方案: 1、检测存放数据库的服务器/存储设备是否存…...
 
使用JavaScrip和HTML搭建一个简单的博客网站系统
搭建一个简单的博客网站系统,我们需要创建几个基本的页面和功能:登录、注册、文章发布等。这里我们先实现一个基础版本,包括用户登录、注册以及文章发布的功能。由于这是一个简化版的示例,我们将所有逻辑集成在一个HTML文件中&…...
 
算法-字符串-76.最小覆盖子串
一、题目 二、思路解析 1.思路: 滑动窗口!!! 2.常用方法: 无 3.核心逻辑: 1.特殊情况:s或t是否为空字符串 if(snull||tnull)return ""; 2.声明一个字符数组——用于记录对应字符出现…...
 
Python爬虫之Selenium的应用
【1】Selenium基础介绍 1.什么是selenium? (1)Selenium是一个用于Web应用程序测试的工具。 (2)Selenium 测试直接运行在浏览器中,就像真正的用户在操作一样。 (3)支持通过各种driv…...
 
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
 
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
 
【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录
#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...
 
EEG-fNIRS联合成像在跨频率耦合研究中的创新应用
摘要 神经影像技术对医学科学产生了深远的影响,推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下,基于神经血管耦合现象的多模态神经影像方法,通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里,本研…...
 
python可视化:俄乌战争时间线关键节点与深层原因
俄乌战争时间线可视化分析:关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一,自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具,系统分析这场战争的时间线、关键节点及其背后的深层原因,全面…...
Flask和Django,你怎么选?
Flask 和 Django 是 Python 两大最流行的 Web 框架,但它们的设计哲学、目标和适用场景有显著区别。以下是详细的对比: 核心区别:哲学与定位 Django: 定位: "全栈式" Web 框架。奉行"开箱即用"的理念。 哲学: "包含…...
 
多层PCB技术解析:从材料选型到制造工艺的深度实践
在电子设备集成度与信号传输要求不断提升的背景下,多层PCB凭借分层布局优势,成为高速通信、汽车电子、工业控制等领域的核心载体。其通过导电层、绝缘层的交替堆叠,实现复杂电路的立体化设计,显著提升空间利用率与信号完整性。 一…...
Prompt工程学习之思维树(TOT)
思维树 定义:思维树(Tree of Thoughts, ToT) 是一种先进的推理框架,它通过同时探索多条推理路径对思维链(Chain of Thought)** 进行了扩展。该技术将问题解决视为一个搜索过程 —— 模型生成不同的中间步骤…...
嵌入式面试提纲
一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责把数据帧(Frame)在相邻节点间传输。 网络层(Internet Layer) 最典型的是 IP 协议 (IPv4/IPv6)。负责 路由选路、分片与重组。 其他:ICMP(Ping、目的不可达等)…...
