如何对小型固定翼无人机进行最优的路径跟随控制?
控制架构
文章继续采用的是 ULTRA-Extra无人机,相关参数如下:
这里用于guidance law的无人机运动学模型为:
{ x ˙ p = V a cos γ cos χ + V w cos γ w cos χ w y ˙ p = V a cos γ sin χ + V w cos γ w sin χ w z ˙ p = V a sin γ + V w sin γ w χ ˙ = g tan ϕ / V a γ ˙ = g ( n z cos ϕ − cos γ ) / V a \begin{cases} \dot{x}_p = V_a\cos\gamma\cos\chi + V_w\cos\gamma_w\cos\chi_w \\ \dot{y}_p = V_a\cos\gamma\sin\chi + V_w\cos\gamma_w\sin\chi_w \\ \dot{z}_p = V_a\sin\gamma + V_w\sin\gamma_w \\ \dot{\chi} = g\tan\phi/V_a \\ \dot{\gamma} = g(n_z\cos\phi-\cos\gamma)/V_a \end{cases} ⎩ ⎨ ⎧x˙p=Vacosγcosχ+Vwcosγwcosχwy˙p=Vacosγsinχ+Vwcosγwsinχwz˙p=Vasinγ+Vwsinγwχ˙=gtanϕ/Vaγ˙=g(nzcosϕ−cosγ)/Va
其中状态量为 ( x p , y p , z p , γ , χ ) (x_p,y_p,z_p,\gamma,\chi) (xp,yp,zp,γ,χ),控制量为 ( V a , n z , ϕ ) (V_a,n_z,\phi) (Va,nz,ϕ)。在自动驾驶仪(Autopilot)中,采用 Successive-Loop-Closure (SLC)实现参考量 ( V a m , n z m , ϕ m ) (V_{a_m},n_{z_m},\phi_m) (Vam,nzm,ϕm)的信号跟踪:
自动驾驶仪中依然采用横纵向通道的SLC实现控制,相应的控制逻辑如下:
Path Following 最优控制器
对运动学模型进行二阶求导可以得到:
( x ˙ p y ˙ p z ˙ p χ ˙ γ ˙ x ¨ p y ¨ p z ¨ p χ ¨ γ ¨ V ˙ a ϕ ˙ n ˙ z ) = ( O 5 × 5 I 5 O 5 × 3 − V a cos γ sin χ − V a sin γ cos χ V a cos γ cos χ − V a sin γ sin χ O 5 × 5 O 5 × 3 0 V a cos γ O 5 × 3 0 0 0 g sin γ V a O 3 × 13 ) ( x p y p z p χ γ x ˙ p y ˙ p z ˙ p χ ˙ γ ˙ V a ϕ n z ) + ( O 5 × 3 cos γ cos χ 0 0 cos γ sin χ 0 0 sin γ 0 0 − g tan ϕ V a 2 g V a cos 2 ϕ 0 g ( cos γ − n z cos ϕ ) V a 2 − g n z sin ϕ V a g cos ϕ V a I 3 ) ( V ˙ a ϕ ˙ n ˙ z ) \left( \begin{matrix} {{{\dot{x}}}_{p}} \\ {{{\dot{y}}}_{p}} \\ {{{\dot{z}}}_{p}} \\ {\dot{\chi }} \\ {\dot{\gamma }} \\ {{{\ddot{x}}}_{p}} \\ {{{\ddot{y}}}_{p}} \\ {{{\ddot{z}}}_{p}} \\ {\ddot{\chi }} \\ {\ddot{\gamma }} \\ \dot{V}_a\\ \dot{\phi} \\ \dot{n}_z\\ \end{matrix} \right)=\left( \begin{matrix} {{O}_{5\times 5}} & {} & {{I}_{5}} & {} & O_{5\times 3} \\ {} & {} & -{{V}_{a}}\cos \gamma \sin \chi & -{{V}_{a}}\sin \gamma \cos \chi \\ {} & {} & {{V}_{a}}\cos \gamma \cos \chi & -{{V}_{a}}\sin \gamma \sin \chi \\ {{O}_{5\times 5}} & {{O}_{5\times 3}} & 0 & {{V}_{a}}\cos \gamma & O_{5\times 3}\\ {} & {} & 0 & 0 \\ {} & {} & 0 & \frac{g\sin \gamma }{V_{a}^{{}}} \\ {} & {} & {} & O_{3 \times 13} \end{matrix} \right)\left( \begin{matrix} {{x}_{p}} \\ {{y}_{p}} \\ {{z}_{p}} \\ \chi \\ \gamma \\ {{{\dot{x}}}_{p}} \\ {{{\dot{y}}}_{p}} \\ {{{\dot{z}}}_{p}} \\ {\dot{\chi }} \\ {\dot{\gamma }} \\ V_a\\ \phi \\n_z \end{matrix} \right)+\left( \begin{matrix} {} & {{O}_{5\times 3}} & {} \\ \cos \gamma \cos \chi & 0 & 0 \\ \cos \gamma \sin \chi & 0 & 0 \\ \sin \gamma & 0 & 0 \\ -\frac{g\tan \phi }{V_{a}^{2}} & \frac{g}{{{V}_{a}}{{\cos }^{2}}\phi } & 0 \\ \frac{g(\cos \gamma -{{n}_{z}}\cos \phi )}{V_{a}^{2}} & -\frac{g{{n}_{z}}\sin \phi }{V_{a}^{{}}} & \frac{g\cos \phi }{V_{a}^{{}}} \\ & I_{3} &\\ \end{matrix} \right)\left( \begin{align} & {{{\dot{V}}}_{a}} \\ & {\dot{\phi }} \\ & {{{\dot{n}}}_{z}} \\ \end{align} \right) x˙py˙pz˙pχ˙γ˙x¨py¨pz¨pχ¨γ¨V˙aϕ˙n˙z = O5×5O5×5O5×3I5−VacosγsinχVacosγcosχ000−Vasinγcosχ−VasinγsinχVacosγ0VagsinγO3×13O5×3O5×3 xpypzpχγx˙py˙pz˙pχ˙γ˙Vaϕnz + cosγcosχcosγsinχsinγ−Va2gtanϕVa2g(cosγ−nzcosϕ)O5×3000Vacos2ϕg−VagnzsinϕI30000Vagcosϕ V˙aϕ˙n˙z
这里设 ρ = ( γ , χ , V a , ϕ , n z ) T \rho=(\gamma,\chi,V_a,\phi,n_z)^T ρ=(γ,χ,Va,ϕ,nz)T, x = ( x p , y p , z p , χ , γ , x ˙ p , y ˙ p , z ˙ p , χ ˙ , γ ˙ , V a , ϕ , n z ) T x=(x_p,y_p,z_p,\chi,\gamma,\dot{x}_p,\dot{y}_p,\dot{z}_p,\dot{\chi},\dot{\gamma},V_a,\phi,n_z)^T x=(xp,yp,zp,χ,γ,x˙p,y˙p,z˙p,χ˙,γ˙,Va,ϕ,nz)T, u = ( V ˙ a , ϕ ˙ , n ˙ z ) T u=(\dot{V}_a,\dot{\phi},\dot{n}_z)^T u=(V˙a,ϕ˙,n˙z)T,得到:
x ˙ = A v ( ρ ) x + B v ( ρ ) u \dot{x}=A_v(\rho)x+B_v(\rho)u x˙=Av(ρ)x+Bv(ρ)u
假设要跟踪的量为 r = ( x r , y r , z r ) T r=(x_r,y_r,z_r)^T r=(xr,yr,zr)T,构造跟踪向量 e = ( x r − x p , y r − y p , z r − z p ) T = r − ( x p , y p , z p ) T e=(x_r-x_p,y_r-y_p,z_r-z_p)^T=r-(x_p,y_p,z_p)^T e=(xr−xp,yr−yp,zr−zp)T=r−(xp,yp,zp)T, e ˙ = r ˙ − ( x ˙ p , y ˙ p , z ˙ p ) T = r ˙ − C x \dot{e} = \dot{r} - (\dot{x}_p,\dot{y}_p,\dot{z}_p)^T=\dot{r}-Cx e˙=r˙−(x˙p,y˙p,z˙p)T=r˙−Cx,有:
( x ˙ e ˙ ) = ( A v ( ρ ) O 13 × 3 − C O 3 × 3 ) ( x e ) + ( B v ( ρ ) O 3 × 3 ) u + ( O 13 × 1 r ˙ ) \begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \begin{pmatrix} A_v(\rho) &O_{13 \times 3} \\ -C & O_{3 \times 3} \end{pmatrix}\begin{pmatrix} x \\ e \end{pmatrix} +\begin{pmatrix} B_v(\rho)\\O_{3 \times 3} \end{pmatrix}u+\begin{pmatrix} O_{13\times 1} \\\dot{r} \end{pmatrix} (x˙e˙)=(Av(ρ)−CO13×3O3×3)(xe)+(Bv(ρ)O3×3)u+(O13×1r˙)
上市被描述为:
x ˙ e = A e ( ρ ) x e + B e ( ρ ) u + c e \dot{x}_{e}=A_e(\rho)x_e + B_e(\rho)u + c_e x˙e=Ae(ρ)xe+Be(ρ)u+ce
其中,
C = ( O 3 × 5 ∣ I 3 ∣ O 3 × 5 ) C=\begin{pmatrix} O_{3\times 5} | I_3 |O_{3\times 5} \end{pmatrix} C=(O3×5∣I3∣O3×5)
利用4阶Runge-Kutta法可以将上式可以离散化为一个LPV状态空间方程(linear parameter varying state-space representation):
x e , k + 1 = A e ( ρ k ) x e , k + B e ( ρ k ) u e , k + c r , k x_{e,k+1} = A_e(\rho_k)x_{e,k}+B_e(\rho_k)u_{e,k}+c_{r,k} xe,k+1=Ae(ρk)xe,k+Be(ρk)ue,k+cr,k
其中, T s T_s Ts是采样时间,
A e ( ρ k ) = 1 24 A e ( ρ k ) 4 T s 4 + 1 6 A e 3 ( ρ k ) T s 3 + 1 2 A e ( ρ k ) 2 T s 2 + A e ( ρ k ) T s + I B e ( ρ k ) = 1 24 A e ( ρ k ) 3 B e ( ρ k ) T s 4 + 1 6 A e 2 ( ρ k ) B e ( ρ k ) T s 3 + 1 2 A e ( ρ k ) B e ( ρ k ) T s 2 + B e ( ρ k ) T s A_e(\rho_k)=\frac{1}{24}A_e(\rho_k)^4T_s^4+\frac{1}{6}A^3_e(\rho_k)T_s^3+\frac{1}{2}A_e(\rho_k)^2T_s^2+A_e(\rho_k)T_s+I \\ B_e(\rho_k)=\frac{1}{24}A_e(\rho_k)^3B_e(\rho_k)T_s^4+\frac{1}{6}A^2_e(\rho_k)B_e(\rho_k)T_s^3+\frac{1}{2}A_e(\rho_k)B_e(\rho_k)T_s^2+B_e(\rho_k)T_s Ae(ρk)=241Ae(ρk)4Ts4+61Ae3(ρk)Ts3+21Ae(ρk)2Ts2+Ae(ρk)Ts+IBe(ρk)=241Ae(ρk)3Be(ρk)Ts4+61Ae2(ρk)Be(ρk)Ts3+21Ae(ρk)Be(ρk)Ts2+Be(ρk)Ts
上述轨迹跟踪问题可以转化为:
min u ( t ) J [ u ( t ) ] = ∫ t 0 t f 1 + x ( t ) T Q x ( t ) + u ( t ) T R u ( t ) d t x ˙ ( t ) = A v ( ρ ) x ( t ) + B v ( ρ ) u ( t ) x ( t 0 ) = x 0 , E x ( t f ) = ( x r , y r , z r ) T d min ≤ D x ( t ) ≤ d max \min_{u(t)}J[u(t)]=\int_{t_0}^{t_f}1+x(t)^TQx(t)+u(t)^TRu(t)dt \\ \dot{x}(t)=A_v(\rho)x(t) + B_v(\rho)u(t) \\ x(t_0)=x_0,Ex(t_f)=(x_r,y_r,z_r)^T\\ d_{\min} \leq Dx(t) \leq d_{\max} u(t)minJ[u(t)]=∫t0tf1+x(t)TQx(t)+u(t)TRu(t)dtx˙(t)=Av(ρ)x(t)+Bv(ρ)u(t)x(t0)=x0,Ex(tf)=(xr,yr,zr)Tdmin≤Dx(t)≤dmax
其中: E = ( I 3 , O 3 × 10 ) E=(I_3,O_{3\times 10}) E=(I3,O3×10), D = ( O 3 × 10 , I 3 ) D = (O_{3\times 10},I_3) D=(O3×10,I3), Q = Q T ≥ 0 , R = R T ≥ 0 Q=Q^T\geq 0,R=R^T\geq 0 Q=QT≥0,R=RT≥0, d min = ( V a min , ϕ a min , n z min ) T d_{\min}=(V_{a\min},\phi_{a\min},n_{z\min})^T dmin=(Vamin,ϕamin,nzmin)T, d max = ( V a max , ϕ a max , n z max ) T d_{\max}=(V_{a\max},\phi_{a\max},n_{z\max})^T dmax=(Vamax,ϕamax,nzmax)T。令 ∂ H ∂ u = 2 R u + B v ( ρ ) T λ = 0 \frac{\partial H}{\partial u}=2Ru + B_v(\rho)^T\lambda = 0 ∂u∂H=2Ru+Bv(ρ)Tλ=0,得到:
u = − 1 2 R − 1 B v ( ρ ) T λ u = -\frac{1}{2}R^{-1}B_v(\rho)^T\lambda u=−21R−1Bv(ρ)Tλ
构造Hamilton函数 H = 1 + x T Q x + u T R u + λ T [ A v ( ρ ) x + B v ( ρ ) u ] H=1+x^TQx+u^TRu+\lambda^T [A_v(\rho)x+B_v(\rho)u] H=1+xTQx+uTRu+λT[Av(ρ)x+Bv(ρ)u],令 ρ = x \rho =x ρ=x:
{ λ ˙ = − ∂ H ∂ x = − ( 2 Q x + λ T ∂ ∂ x ( A v ( ρ ) x + B v ( ρ ) u ) ) x ˙ = ∂ H ∂ λ = A v ( ρ ) x + B v ( ρ ) u \begin{cases} \dot{\lambda}=-\frac{\partial H}{\partial x}=-(2Qx+\lambda^T\frac{\partial}{\partial x}(A_v(\rho)x+B_v(\rho)u)) \\ \dot{x} =\frac{\partial H}{\partial \lambda}= A_v(\rho)x + B_v(\rho)u \end{cases} {λ˙=−∂x∂H=−(2Qx+λT∂x∂(Av(ρ)x+Bv(ρ)u))x˙=∂λ∂H=Av(ρ)x+Bv(ρ)u
其中,
∂ ∂ x [ A v ( ρ ) x ] = ? ∂ ∂ x [ B v ( ρ ) u ] = − 1 2 ∂ ∂ x [ B v ( ρ ) R − 1 B v ( ρ ) T λ ] = ? \frac{\partial}{\partial x}[A_v(\rho)x] = ?\\ \frac{\partial }{\partial x}[B_v(\rho)u] = -\frac{1}{2}\frac{\partial }{\partial x}[B_v(\rho)R^{-1}B_v(\rho)^T\lambda] = ? ∂x∂[Av(ρ)x]=?∂x∂[Bv(ρ)u]=−21∂x∂[Bv(ρ)R−1Bv(ρ)Tλ]=?
其中 H ( t f ) = 0 H(t_f)=0 H(tf)=0,应该采用打靶法得到 t f t_f tf和 λ 0 \lambda_0 λ0,能使得:
∣ ∣ E x ( t f ) − ( x r , y r , z r ) T ∣ ∣ ≤ ε 1 ∣ ∣ H ( t f ) ∣ ∣ ≤ ε 2 d min ≤ D x ( t ) ≤ d max ||Ex(t_f)-(x_r,y_r,z_r)^T|| \leq \varepsilon_1 \\ ||H(t_f)||\leq \varepsilon_2\\ d_{\min} \leq Dx(t) \leq d_{\max} ∣∣Ex(tf)−(xr,yr,zr)T∣∣≤ε1∣∣H(tf)∣∣≤ε2dmin≤Dx(t)≤dmax
获取上述的量后,如何就可以用Matlab的ode45
函数,或者直接采用bvp4c
将上述两点边值问题(BVP),迭代出最优轨迹和最优策略。
相关文章:

如何对小型固定翼无人机进行最优的路径跟随控制?
控制架构 文章继续采用的是 ULTRA-Extra无人机,相关参数如下: 这里用于guidance law的无人机运动学模型为: { x ˙ p V a cos γ cos χ V w cos γ w cos χ w y ˙ p V a cos γ sin χ V w cos γ w sin χ…...
C++常见面试题-初级2
1. C和C有什么区别? C是面向对象的语言,而C是面向过程的语言;C引入new/delete运算符,取代了C中的malloc/free库函数;C引入引用的概念,而C中没有;C引入类的概念,而C中没有࿱…...

Spring Security 6 系列之二 - 基于数据库的用户认证和认证原理
之所以想写这一系列,是因为之前工作过程中使用Spring Security,但当时基于spring-boot 2.3.x,其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0,结果一看Spring Security也升级为6.3.0,关键是其风…...

mfc140.dll是什么东西?mfc140.dll缺失的几种具体解决方法
mfc140.dll是Microsoft Foundation Classes(MFC)库中的一个动态链接库(DLL)文件,它是微软基础类库的一部分,为Windows应用程序的开发提供了丰富的类库和接口。MFC库旨在简化Windows应用程序的开发过程&…...

【STM32 Modbus编程】-作为主设备写入多个线圈和寄存器
作为主设备写入多个线圈和寄存器 文章目录 作为主设备写入多个线圈和寄存器1、硬件准备与连接1.1 RS485模块介绍1.2 硬件配置与接线1.3 软件准备2、写入多个线圈2.1 数据格式2.2 发送数据2.3 结果3、写入多个寄存器3.1 数据格式3.2 发送数据3.3 结果本文将实现STM32作为ModBus主…...

Windows安全中心(病毒和威胁防护)的注册
文章目录 Windows安全中心(病毒和威胁防护)的注册1. 简介2. WSC注册初探3. WSC注册原理分析4. 关于AMPPL5. 参考 Windows安全中心(病毒和威胁防护)的注册 本文我们来分析一下Windows安全中心(Windows Security Center…...

微积分复习笔记 Calculus Volume 2 - 4.2 Direction Fields and Numerical Methods
4.2 Direction Fields and Numerical Methods - Calculus Volume 2 | OpenStax...
深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
文章目录 前言一、 旋转位置编码原理1、RoPE概述2、 复数域内的旋转1、位置编码生成2、 应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言 随着自然语言处理(NLP)领域的快速发…...

内网穿透的应用-在OpenWrt上轻松搭建SFTP服务,安全传输文件不再难!
文章目录 前言1. 安装openssh-sftp-server2. 安装cpolar工具3.配置SFTP远程访问4.固定远程连接地址 前言 本次教程我们将在OpenWRT系统上安装SFTP服务,并结合cpolar内网穿透,创建安全隧道映射22端口,实现在公网环境下远程OpenWRT SFTP&#…...

【图像处理lec3、4】空间域的图像增强
目录 1. 空间域图像增强的背景与目标 2. 空间域处理的数学描述 3. 灰度级变换 4. 幂律变换(Power-Law Transformation) 5、 分段线性变换 Case 1: 对比度拉伸 Case 2: 灰度切片 Case 3: 按位切片 6、对数变换(Logarithmic Transform…...

【算法day13】二叉树:递归与回溯
题目引用 找树左下角的值路径总和从中序与后序遍历构造二叉树 今天就简简单单三道题吧~ 1. 找到树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 我们…...

上海亚商投顾:创业板指缩量下跌 多只高位股午后跌停
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天震荡调整,创业板指领跌,高位股开始出现退潮,建设工业、星光股份、…...

单步调试Android Framework——App冷启动
纸上得来终觉浅,绝知此事要躬行。 —— [宋]陆游 基于aosp_cf_x86_64_phone-trunk_staging-eng , 下面是具体断点位置。 第一部分,桌面launcher进程 com.android.launcher3.touch.ItemClickHandler onClickonClickAppShortcutstartAppShor…...
统计一个目录下的文件及目录数量-linux010
要统计一个目录下的文件数量(包括子目录中的文件),可以使用以下命令: 1. 统计所有文件数量(包括子目录) 在终端中运行以下命令: find /path/to/directory -type f | wc -l 解释:…...
spring RestTemplate使用说明
rest-template是spring对httpclient的逻辑封装,它底层还是基于httpclient,所以一些配置其实跟httpclient是强相关的。 基本配置 rest-template可以不带参数,使用默认配置,也可以指定ClientHttpRequestFactory参数,Cl…...
thinkphp:try-catch捕获异常
使用简单的例子,实现了一个简单的try-catch捕获异常的实例 //开始事务Db::startTrans(); try{ //有异常抛出异常 if(存在错误){ throw new \Exception("异常信息"); } // 提交事务 Db::commit(); // 返回成功信息 ... } catch (\…...
shardingsphere分库分表跨库访问 添加分片规则
shardingsphere分库分表跨库访问 添加分片规则 建立 JDBC 环境 创建表 t_order: CREATE TABLE t_order (tid bigint(20) NOT NULL,tname varchar(255) DEFAULT NULL,goods_id bigint(20) DEFAULT NULL,tstatus varchar(255) DEFAULT NULL,PRIMARY KEY (tid) ) E…...
c++:std::map下标运算符的不合理使用
这是我分析之前遗留代码时发现的一个隐藏点;不过我并不认为这样使用std::map是合理的。 看看简化后的代码,v1、v2的值应该是多少呢? #include <map>std::map<int, int> cm[2];int get_cm_value(int device, int ctrl) { auto …...

KeyFormer:使用注意力分数压缩KV缓存
Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference 202403,发表在Mlsys Introduction 优化KV cache的策略,主要是集中在系统级别的优化上,比如FlashAttention、PagedAttention,它…...
MetaGPT源码 (ContextMixin 类)
目录 理解 ContextMixin什么是 ContextMixin?主要组件实现细节 测试 ContextMixin示例:ModelX1. 配置优先级2. 多继承3. 多继承重写4. 配置优先级 在本文中,我们将探索 ContextMixin 类,它在多重继承场景中的集成及其在 Python 配…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...