如何对小型固定翼无人机进行最优的路径跟随控制?
控制架构
文章继续采用的是 ULTRA-Extra无人机,相关参数如下:
这里用于guidance law的无人机运动学模型为:
{ x ˙ p = V a cos γ cos χ + V w cos γ w cos χ w y ˙ p = V a cos γ sin χ + V w cos γ w sin χ w z ˙ p = V a sin γ + V w sin γ w χ ˙ = g tan ϕ / V a γ ˙ = g ( n z cos ϕ − cos γ ) / V a \begin{cases} \dot{x}_p = V_a\cos\gamma\cos\chi + V_w\cos\gamma_w\cos\chi_w \\ \dot{y}_p = V_a\cos\gamma\sin\chi + V_w\cos\gamma_w\sin\chi_w \\ \dot{z}_p = V_a\sin\gamma + V_w\sin\gamma_w \\ \dot{\chi} = g\tan\phi/V_a \\ \dot{\gamma} = g(n_z\cos\phi-\cos\gamma)/V_a \end{cases} ⎩ ⎨ ⎧x˙p=Vacosγcosχ+Vwcosγwcosχwy˙p=Vacosγsinχ+Vwcosγwsinχwz˙p=Vasinγ+Vwsinγwχ˙=gtanϕ/Vaγ˙=g(nzcosϕ−cosγ)/Va
其中状态量为 ( x p , y p , z p , γ , χ ) (x_p,y_p,z_p,\gamma,\chi) (xp,yp,zp,γ,χ),控制量为 ( V a , n z , ϕ ) (V_a,n_z,\phi) (Va,nz,ϕ)。在自动驾驶仪(Autopilot)中,采用 Successive-Loop-Closure (SLC)实现参考量 ( V a m , n z m , ϕ m ) (V_{a_m},n_{z_m},\phi_m) (Vam,nzm,ϕm)的信号跟踪:
自动驾驶仪中依然采用横纵向通道的SLC实现控制,相应的控制逻辑如下:
Path Following 最优控制器
对运动学模型进行二阶求导可以得到:
( x ˙ p y ˙ p z ˙ p χ ˙ γ ˙ x ¨ p y ¨ p z ¨ p χ ¨ γ ¨ V ˙ a ϕ ˙ n ˙ z ) = ( O 5 × 5 I 5 O 5 × 3 − V a cos γ sin χ − V a sin γ cos χ V a cos γ cos χ − V a sin γ sin χ O 5 × 5 O 5 × 3 0 V a cos γ O 5 × 3 0 0 0 g sin γ V a O 3 × 13 ) ( x p y p z p χ γ x ˙ p y ˙ p z ˙ p χ ˙ γ ˙ V a ϕ n z ) + ( O 5 × 3 cos γ cos χ 0 0 cos γ sin χ 0 0 sin γ 0 0 − g tan ϕ V a 2 g V a cos 2 ϕ 0 g ( cos γ − n z cos ϕ ) V a 2 − g n z sin ϕ V a g cos ϕ V a I 3 ) ( V ˙ a ϕ ˙ n ˙ z ) \left( \begin{matrix} {{{\dot{x}}}_{p}} \\ {{{\dot{y}}}_{p}} \\ {{{\dot{z}}}_{p}} \\ {\dot{\chi }} \\ {\dot{\gamma }} \\ {{{\ddot{x}}}_{p}} \\ {{{\ddot{y}}}_{p}} \\ {{{\ddot{z}}}_{p}} \\ {\ddot{\chi }} \\ {\ddot{\gamma }} \\ \dot{V}_a\\ \dot{\phi} \\ \dot{n}_z\\ \end{matrix} \right)=\left( \begin{matrix} {{O}_{5\times 5}} & {} & {{I}_{5}} & {} & O_{5\times 3} \\ {} & {} & -{{V}_{a}}\cos \gamma \sin \chi & -{{V}_{a}}\sin \gamma \cos \chi \\ {} & {} & {{V}_{a}}\cos \gamma \cos \chi & -{{V}_{a}}\sin \gamma \sin \chi \\ {{O}_{5\times 5}} & {{O}_{5\times 3}} & 0 & {{V}_{a}}\cos \gamma & O_{5\times 3}\\ {} & {} & 0 & 0 \\ {} & {} & 0 & \frac{g\sin \gamma }{V_{a}^{{}}} \\ {} & {} & {} & O_{3 \times 13} \end{matrix} \right)\left( \begin{matrix} {{x}_{p}} \\ {{y}_{p}} \\ {{z}_{p}} \\ \chi \\ \gamma \\ {{{\dot{x}}}_{p}} \\ {{{\dot{y}}}_{p}} \\ {{{\dot{z}}}_{p}} \\ {\dot{\chi }} \\ {\dot{\gamma }} \\ V_a\\ \phi \\n_z \end{matrix} \right)+\left( \begin{matrix} {} & {{O}_{5\times 3}} & {} \\ \cos \gamma \cos \chi & 0 & 0 \\ \cos \gamma \sin \chi & 0 & 0 \\ \sin \gamma & 0 & 0 \\ -\frac{g\tan \phi }{V_{a}^{2}} & \frac{g}{{{V}_{a}}{{\cos }^{2}}\phi } & 0 \\ \frac{g(\cos \gamma -{{n}_{z}}\cos \phi )}{V_{a}^{2}} & -\frac{g{{n}_{z}}\sin \phi }{V_{a}^{{}}} & \frac{g\cos \phi }{V_{a}^{{}}} \\ & I_{3} &\\ \end{matrix} \right)\left( \begin{align} & {{{\dot{V}}}_{a}} \\ & {\dot{\phi }} \\ & {{{\dot{n}}}_{z}} \\ \end{align} \right) x˙py˙pz˙pχ˙γ˙x¨py¨pz¨pχ¨γ¨V˙aϕ˙n˙z = O5×5O5×5O5×3I5−VacosγsinχVacosγcosχ000−Vasinγcosχ−VasinγsinχVacosγ0VagsinγO3×13O5×3O5×3 xpypzpχγx˙py˙pz˙pχ˙γ˙Vaϕnz + cosγcosχcosγsinχsinγ−Va2gtanϕVa2g(cosγ−nzcosϕ)O5×3000Vacos2ϕg−VagnzsinϕI30000Vagcosϕ V˙aϕ˙n˙z
这里设 ρ = ( γ , χ , V a , ϕ , n z ) T \rho=(\gamma,\chi,V_a,\phi,n_z)^T ρ=(γ,χ,Va,ϕ,nz)T, x = ( x p , y p , z p , χ , γ , x ˙ p , y ˙ p , z ˙ p , χ ˙ , γ ˙ , V a , ϕ , n z ) T x=(x_p,y_p,z_p,\chi,\gamma,\dot{x}_p,\dot{y}_p,\dot{z}_p,\dot{\chi},\dot{\gamma},V_a,\phi,n_z)^T x=(xp,yp,zp,χ,γ,x˙p,y˙p,z˙p,χ˙,γ˙,Va,ϕ,nz)T, u = ( V ˙ a , ϕ ˙ , n ˙ z ) T u=(\dot{V}_a,\dot{\phi},\dot{n}_z)^T u=(V˙a,ϕ˙,n˙z)T,得到:
x ˙ = A v ( ρ ) x + B v ( ρ ) u \dot{x}=A_v(\rho)x+B_v(\rho)u x˙=Av(ρ)x+Bv(ρ)u
假设要跟踪的量为 r = ( x r , y r , z r ) T r=(x_r,y_r,z_r)^T r=(xr,yr,zr)T,构造跟踪向量 e = ( x r − x p , y r − y p , z r − z p ) T = r − ( x p , y p , z p ) T e=(x_r-x_p,y_r-y_p,z_r-z_p)^T=r-(x_p,y_p,z_p)^T e=(xr−xp,yr−yp,zr−zp)T=r−(xp,yp,zp)T, e ˙ = r ˙ − ( x ˙ p , y ˙ p , z ˙ p ) T = r ˙ − C x \dot{e} = \dot{r} - (\dot{x}_p,\dot{y}_p,\dot{z}_p)^T=\dot{r}-Cx e˙=r˙−(x˙p,y˙p,z˙p)T=r˙−Cx,有:
( x ˙ e ˙ ) = ( A v ( ρ ) O 13 × 3 − C O 3 × 3 ) ( x e ) + ( B v ( ρ ) O 3 × 3 ) u + ( O 13 × 1 r ˙ ) \begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \begin{pmatrix} A_v(\rho) &O_{13 \times 3} \\ -C & O_{3 \times 3} \end{pmatrix}\begin{pmatrix} x \\ e \end{pmatrix} +\begin{pmatrix} B_v(\rho)\\O_{3 \times 3} \end{pmatrix}u+\begin{pmatrix} O_{13\times 1} \\\dot{r} \end{pmatrix} (x˙e˙)=(Av(ρ)−CO13×3O3×3)(xe)+(Bv(ρ)O3×3)u+(O13×1r˙)
上市被描述为:
x ˙ e = A e ( ρ ) x e + B e ( ρ ) u + c e \dot{x}_{e}=A_e(\rho)x_e + B_e(\rho)u + c_e x˙e=Ae(ρ)xe+Be(ρ)u+ce
其中,
C = ( O 3 × 5 ∣ I 3 ∣ O 3 × 5 ) C=\begin{pmatrix} O_{3\times 5} | I_3 |O_{3\times 5} \end{pmatrix} C=(O3×5∣I3∣O3×5)
利用4阶Runge-Kutta法可以将上式可以离散化为一个LPV状态空间方程(linear parameter varying state-space representation):
x e , k + 1 = A e ( ρ k ) x e , k + B e ( ρ k ) u e , k + c r , k x_{e,k+1} = A_e(\rho_k)x_{e,k}+B_e(\rho_k)u_{e,k}+c_{r,k} xe,k+1=Ae(ρk)xe,k+Be(ρk)ue,k+cr,k
其中, T s T_s Ts是采样时间,
A e ( ρ k ) = 1 24 A e ( ρ k ) 4 T s 4 + 1 6 A e 3 ( ρ k ) T s 3 + 1 2 A e ( ρ k ) 2 T s 2 + A e ( ρ k ) T s + I B e ( ρ k ) = 1 24 A e ( ρ k ) 3 B e ( ρ k ) T s 4 + 1 6 A e 2 ( ρ k ) B e ( ρ k ) T s 3 + 1 2 A e ( ρ k ) B e ( ρ k ) T s 2 + B e ( ρ k ) T s A_e(\rho_k)=\frac{1}{24}A_e(\rho_k)^4T_s^4+\frac{1}{6}A^3_e(\rho_k)T_s^3+\frac{1}{2}A_e(\rho_k)^2T_s^2+A_e(\rho_k)T_s+I \\ B_e(\rho_k)=\frac{1}{24}A_e(\rho_k)^3B_e(\rho_k)T_s^4+\frac{1}{6}A^2_e(\rho_k)B_e(\rho_k)T_s^3+\frac{1}{2}A_e(\rho_k)B_e(\rho_k)T_s^2+B_e(\rho_k)T_s Ae(ρk)=241Ae(ρk)4Ts4+61Ae3(ρk)Ts3+21Ae(ρk)2Ts2+Ae(ρk)Ts+IBe(ρk)=241Ae(ρk)3Be(ρk)Ts4+61Ae2(ρk)Be(ρk)Ts3+21Ae(ρk)Be(ρk)Ts2+Be(ρk)Ts
上述轨迹跟踪问题可以转化为:
min u ( t ) J [ u ( t ) ] = ∫ t 0 t f 1 + x ( t ) T Q x ( t ) + u ( t ) T R u ( t ) d t x ˙ ( t ) = A v ( ρ ) x ( t ) + B v ( ρ ) u ( t ) x ( t 0 ) = x 0 , E x ( t f ) = ( x r , y r , z r ) T d min ≤ D x ( t ) ≤ d max \min_{u(t)}J[u(t)]=\int_{t_0}^{t_f}1+x(t)^TQx(t)+u(t)^TRu(t)dt \\ \dot{x}(t)=A_v(\rho)x(t) + B_v(\rho)u(t) \\ x(t_0)=x_0,Ex(t_f)=(x_r,y_r,z_r)^T\\ d_{\min} \leq Dx(t) \leq d_{\max} u(t)minJ[u(t)]=∫t0tf1+x(t)TQx(t)+u(t)TRu(t)dtx˙(t)=Av(ρ)x(t)+Bv(ρ)u(t)x(t0)=x0,Ex(tf)=(xr,yr,zr)Tdmin≤Dx(t)≤dmax
其中: E = ( I 3 , O 3 × 10 ) E=(I_3,O_{3\times 10}) E=(I3,O3×10), D = ( O 3 × 10 , I 3 ) D = (O_{3\times 10},I_3) D=(O3×10,I3), Q = Q T ≥ 0 , R = R T ≥ 0 Q=Q^T\geq 0,R=R^T\geq 0 Q=QT≥0,R=RT≥0, d min = ( V a min , ϕ a min , n z min ) T d_{\min}=(V_{a\min},\phi_{a\min},n_{z\min})^T dmin=(Vamin,ϕamin,nzmin)T, d max = ( V a max , ϕ a max , n z max ) T d_{\max}=(V_{a\max},\phi_{a\max},n_{z\max})^T dmax=(Vamax,ϕamax,nzmax)T。令 ∂ H ∂ u = 2 R u + B v ( ρ ) T λ = 0 \frac{\partial H}{\partial u}=2Ru + B_v(\rho)^T\lambda = 0 ∂u∂H=2Ru+Bv(ρ)Tλ=0,得到:
u = − 1 2 R − 1 B v ( ρ ) T λ u = -\frac{1}{2}R^{-1}B_v(\rho)^T\lambda u=−21R−1Bv(ρ)Tλ
构造Hamilton函数 H = 1 + x T Q x + u T R u + λ T [ A v ( ρ ) x + B v ( ρ ) u ] H=1+x^TQx+u^TRu+\lambda^T [A_v(\rho)x+B_v(\rho)u] H=1+xTQx+uTRu+λT[Av(ρ)x+Bv(ρ)u],令 ρ = x \rho =x ρ=x:
{ λ ˙ = − ∂ H ∂ x = − ( 2 Q x + λ T ∂ ∂ x ( A v ( ρ ) x + B v ( ρ ) u ) ) x ˙ = ∂ H ∂ λ = A v ( ρ ) x + B v ( ρ ) u \begin{cases} \dot{\lambda}=-\frac{\partial H}{\partial x}=-(2Qx+\lambda^T\frac{\partial}{\partial x}(A_v(\rho)x+B_v(\rho)u)) \\ \dot{x} =\frac{\partial H}{\partial \lambda}= A_v(\rho)x + B_v(\rho)u \end{cases} {λ˙=−∂x∂H=−(2Qx+λT∂x∂(Av(ρ)x+Bv(ρ)u))x˙=∂λ∂H=Av(ρ)x+Bv(ρ)u
其中,
∂ ∂ x [ A v ( ρ ) x ] = ? ∂ ∂ x [ B v ( ρ ) u ] = − 1 2 ∂ ∂ x [ B v ( ρ ) R − 1 B v ( ρ ) T λ ] = ? \frac{\partial}{\partial x}[A_v(\rho)x] = ?\\ \frac{\partial }{\partial x}[B_v(\rho)u] = -\frac{1}{2}\frac{\partial }{\partial x}[B_v(\rho)R^{-1}B_v(\rho)^T\lambda] = ? ∂x∂[Av(ρ)x]=?∂x∂[Bv(ρ)u]=−21∂x∂[Bv(ρ)R−1Bv(ρ)Tλ]=?
其中 H ( t f ) = 0 H(t_f)=0 H(tf)=0,应该采用打靶法得到 t f t_f tf和 λ 0 \lambda_0 λ0,能使得:
∣ ∣ E x ( t f ) − ( x r , y r , z r ) T ∣ ∣ ≤ ε 1 ∣ ∣ H ( t f ) ∣ ∣ ≤ ε 2 d min ≤ D x ( t ) ≤ d max ||Ex(t_f)-(x_r,y_r,z_r)^T|| \leq \varepsilon_1 \\ ||H(t_f)||\leq \varepsilon_2\\ d_{\min} \leq Dx(t) \leq d_{\max} ∣∣Ex(tf)−(xr,yr,zr)T∣∣≤ε1∣∣H(tf)∣∣≤ε2dmin≤Dx(t)≤dmax
获取上述的量后,如何就可以用Matlab的ode45
函数,或者直接采用bvp4c
将上述两点边值问题(BVP),迭代出最优轨迹和最优策略。
相关文章:

如何对小型固定翼无人机进行最优的路径跟随控制?
控制架构 文章继续采用的是 ULTRA-Extra无人机,相关参数如下: 这里用于guidance law的无人机运动学模型为: { x ˙ p V a cos γ cos χ V w cos γ w cos χ w y ˙ p V a cos γ sin χ V w cos γ w sin χ…...
C++常见面试题-初级2
1. C和C有什么区别? C是面向对象的语言,而C是面向过程的语言;C引入new/delete运算符,取代了C中的malloc/free库函数;C引入引用的概念,而C中没有;C引入类的概念,而C中没有࿱…...

Spring Security 6 系列之二 - 基于数据库的用户认证和认证原理
之所以想写这一系列,是因为之前工作过程中使用Spring Security,但当时基于spring-boot 2.3.x,其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0,结果一看Spring Security也升级为6.3.0,关键是其风…...

mfc140.dll是什么东西?mfc140.dll缺失的几种具体解决方法
mfc140.dll是Microsoft Foundation Classes(MFC)库中的一个动态链接库(DLL)文件,它是微软基础类库的一部分,为Windows应用程序的开发提供了丰富的类库和接口。MFC库旨在简化Windows应用程序的开发过程&…...

【STM32 Modbus编程】-作为主设备写入多个线圈和寄存器
作为主设备写入多个线圈和寄存器 文章目录 作为主设备写入多个线圈和寄存器1、硬件准备与连接1.1 RS485模块介绍1.2 硬件配置与接线1.3 软件准备2、写入多个线圈2.1 数据格式2.2 发送数据2.3 结果3、写入多个寄存器3.1 数据格式3.2 发送数据3.3 结果本文将实现STM32作为ModBus主…...

Windows安全中心(病毒和威胁防护)的注册
文章目录 Windows安全中心(病毒和威胁防护)的注册1. 简介2. WSC注册初探3. WSC注册原理分析4. 关于AMPPL5. 参考 Windows安全中心(病毒和威胁防护)的注册 本文我们来分析一下Windows安全中心(Windows Security Center…...

微积分复习笔记 Calculus Volume 2 - 4.2 Direction Fields and Numerical Methods
4.2 Direction Fields and Numerical Methods - Calculus Volume 2 | OpenStax...
深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
文章目录 前言一、 旋转位置编码原理1、RoPE概述2、 复数域内的旋转1、位置编码生成2、 应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言 随着自然语言处理(NLP)领域的快速发…...

内网穿透的应用-在OpenWrt上轻松搭建SFTP服务,安全传输文件不再难!
文章目录 前言1. 安装openssh-sftp-server2. 安装cpolar工具3.配置SFTP远程访问4.固定远程连接地址 前言 本次教程我们将在OpenWRT系统上安装SFTP服务,并结合cpolar内网穿透,创建安全隧道映射22端口,实现在公网环境下远程OpenWRT SFTP&#…...

【图像处理lec3、4】空间域的图像增强
目录 1. 空间域图像增强的背景与目标 2. 空间域处理的数学描述 3. 灰度级变换 4. 幂律变换(Power-Law Transformation) 5、 分段线性变换 Case 1: 对比度拉伸 Case 2: 灰度切片 Case 3: 按位切片 6、对数变换(Logarithmic Transform…...

【算法day13】二叉树:递归与回溯
题目引用 找树左下角的值路径总和从中序与后序遍历构造二叉树 今天就简简单单三道题吧~ 1. 找到树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 我们…...

上海亚商投顾:创业板指缩量下跌 多只高位股午后跌停
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天震荡调整,创业板指领跌,高位股开始出现退潮,建设工业、星光股份、…...

单步调试Android Framework——App冷启动
纸上得来终觉浅,绝知此事要躬行。 —— [宋]陆游 基于aosp_cf_x86_64_phone-trunk_staging-eng , 下面是具体断点位置。 第一部分,桌面launcher进程 com.android.launcher3.touch.ItemClickHandler onClickonClickAppShortcutstartAppShor…...
统计一个目录下的文件及目录数量-linux010
要统计一个目录下的文件数量(包括子目录中的文件),可以使用以下命令: 1. 统计所有文件数量(包括子目录) 在终端中运行以下命令: find /path/to/directory -type f | wc -l 解释:…...
spring RestTemplate使用说明
rest-template是spring对httpclient的逻辑封装,它底层还是基于httpclient,所以一些配置其实跟httpclient是强相关的。 基本配置 rest-template可以不带参数,使用默认配置,也可以指定ClientHttpRequestFactory参数,Cl…...
thinkphp:try-catch捕获异常
使用简单的例子,实现了一个简单的try-catch捕获异常的实例 //开始事务Db::startTrans(); try{ //有异常抛出异常 if(存在错误){ throw new \Exception("异常信息"); } // 提交事务 Db::commit(); // 返回成功信息 ... } catch (\…...
shardingsphere分库分表跨库访问 添加分片规则
shardingsphere分库分表跨库访问 添加分片规则 建立 JDBC 环境 创建表 t_order: CREATE TABLE t_order (tid bigint(20) NOT NULL,tname varchar(255) DEFAULT NULL,goods_id bigint(20) DEFAULT NULL,tstatus varchar(255) DEFAULT NULL,PRIMARY KEY (tid) ) E…...
c++:std::map下标运算符的不合理使用
这是我分析之前遗留代码时发现的一个隐藏点;不过我并不认为这样使用std::map是合理的。 看看简化后的代码,v1、v2的值应该是多少呢? #include <map>std::map<int, int> cm[2];int get_cm_value(int device, int ctrl) { auto …...

KeyFormer:使用注意力分数压缩KV缓存
Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference 202403,发表在Mlsys Introduction 优化KV cache的策略,主要是集中在系统级别的优化上,比如FlashAttention、PagedAttention,它…...
MetaGPT源码 (ContextMixin 类)
目录 理解 ContextMixin什么是 ContextMixin?主要组件实现细节 测试 ContextMixin示例:ModelX1. 配置优先级2. 多继承3. 多继承重写4. 配置优先级 在本文中,我们将探索 ContextMixin 类,它在多重继承场景中的集成及其在 Python 配…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

项目进度管理软件是什么?项目进度管理软件有哪些核心功能?
无论是建筑施工、软件开发,还是市场营销活动,项目往往涉及多个团队、大量资源和严格的时间表。如果没有一个系统化的工具来跟踪和管理这些元素,项目很容易陷入混乱,导致进度延误、成本超支,甚至失败。 项目进度管理软…...

从0开始学习R语言--Day17--Cox回归
Cox回归 在用医疗数据作分析时,最常见的是去预测某类病的患者的死亡率或预测他们的结局。但是我们得到的病人数据,往往会有很多的协变量,即使我们通过计算来减少指标对结果的影响,我们的数据中依然会有很多的协变量,且…...