当前位置: 首页 > news >正文

二叉树的最大深度(C语言详解版)

一、摘要

嗨喽呀大家,leetcode每日一题又和大家见面啦,今天要讲的是104.二叉树的最大深度,思路互相学习,有什么不足的地方欢迎指正!好啦让我们开始吧!!!

二、题目简介

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:

输入:root = [1,null,2]
输出:2

提示:

  • 树中节点的数量在 [0, 104] 区间内。
  • -100 <= Node.val <= 100

三、思路详解

针对这道题我先补充一个递归的图像,能够帮我更好理解它递归的过程。图画由于是手画有点潦草

1. 递归法(深度优先搜索)

递归法是求解二叉树问题的常用方法。我们可以使用深度优先搜索(DFS)来遍历二叉树,找到从根节点到最远叶子节点的最长路径。

思路:
  • 如果当前节点为空,返回深度 0。

  • 递归计算左子树和右子树的最大深度。

  • 当前节点的最大深度等于左子树和右子树的最大深度中的较大值加 1。

代码实现:
int maxDepth(struct TreeNode* root) {if (root == NULL) return 0;  // 空节点的深度为0// 递归计算左子树和右子树的最大深度int leftDepth = maxDepth(root->left);int rightDepth = maxDepth(root->right);// 当前节点的最大深度为左右子树最大深度的较大值加1return (leftDepth > rightDepth ? leftDepth : rightDepth) + 1;
}

2. 迭代法(广度优先搜索)

迭代法使用队列来实现广度优先搜索(BFS),可以避免递归的深度限制问题。

思路:
  • 使用一个队列来存储待访问的节点,每个节点附带其深度信息。

  • 从根节点开始,将其深度设为 1。

  • 遍历队列中的每个节点,更新最大深度。

  • 将左右子节点(如果存在)加入队列,深度加 1。

代码实现:
int maxDepth(struct TreeNode* root) {if (root == NULL) return 0;  // 空树的最大深度为0struct TreeNode* queue[10000];  // 队列,假设最多10000个节点int depth[10000];  // 每个节点的深度int front = 0, rear = 0;int maxDepth = 0;queue[rear] = root;depth[rear] = 1;rear++;while (front < rear) {struct TreeNode* node = queue[front];int currentDepth = depth[front];front++;maxDepth = (currentDepth > maxDepth) ? currentDepth : maxDepth;if (node->left) {queue[rear] = node->left;depth[rear] = currentDepth + 1;rear++;}if (node->right) {queue[rear] = node->right;depth[rear] = currentDepth + 1;rear++;}}return maxDepth;
}

3. 前,中,后序遍历

思路:
  • 后序遍历:先计算左子树和右子树的最大深度,再处理当前节点。

  • 前序遍历:先处理当前节点,再计算左子树和右子树的最大深度。

  • 中序遍历:先计算左子树的最大深度,处理当前节点,再计算右子树的最大深度。

  • 在计算最大深度时,这些遍历顺序并没有实际影响,因为左右子树的最大深度是独立计算的,最终结果只取决于左右子树的最大深度。

  • 二叉树的最大深度是从根节点到最远叶子节点的最长路径上的节点数。

  • 无论采用哪种遍历顺序(前序、中序、后序),最终都需要计算左子树和右子树的最大深度,并取较大值加 1。

代码实现:
int maxDepth(struct TreeNode* root) {if (root == NULL) return 0;  // 空节点的深度为0// 递归计算左子树和右子树的最大深度int leftDepth = maxDepth(root->left);int rightDepth = maxDepth(root->right);// 当前节点的最大深度为左右子树最大深度的较大值加1return (leftDepth > rightDepth ? leftDepth : rightDepth) + 1;
}

好啦,其实这类型的题目大致思路都是一样的,看完这些思路之后可以针对性的多做几道练习,今天的讲解就到这里啦。我们明天见! 

相关文章:

二叉树的最大深度(C语言详解版)

一、摘要 嗨喽呀大家&#xff0c;leetcode每日一题又和大家见面啦&#xff0c;今天要讲的是104.二叉树的最大深度&#xff0c;思路互相学习&#xff0c;有什么不足的地方欢迎指正&#xff01;好啦让我们开始吧&#xff01;&#xff01;&#xff01; 二、题目简介 给定一个二…...

基于dlib/face recognition人脸识别推拉流实现

目录 一.环境搭建 二.推拉流代码 三.人脸检测推拉流 一.环境搭建 1.下载RTSP服务器MediaMTX与FFmpeg FFmpeg是一款功能强大的开源多媒体处理工具,而MediaMTX则是一个轻量级的流媒体服务器。两者结合,可以实现将本地视频或者实时摄像头画面推送到RTSP流,从而实现视频…...

【kong gateway】5分钟快速上手kong gateway

kong gateway的请求响应示意图 安装 下载对应的docker 镜像 可以直接使用docker pull命令拉取&#xff0c;也可以从以下地址下载&#xff1a;kong gateway 3.9.0.0 docker 镜像 https://download.csdn.net/download/zhangshenglu1/90307400&#xff0c; postgres-13.tar http…...

webrtc入门系列(五)amazon-kinesis-video-streams-webrtc-sdk-c编译

《webrtc入门系列&#xff08;一&#xff09;easy_webrtc_server 入门环境搭建》 《webrtc入门系列&#xff08;二&#xff09;easy_webrtc_server 入门example测试》 《webrtc入门系列&#xff08;三&#xff09;云服务器coturn环境搭建》 《webrtc入门系列&#xff08;四&…...

通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)

大家对于智能体代理Agent一定已经非常熟悉&#xff0c;自主代理&#xff08;Autonomous Agents&#xff09; 目前在AI行业极其热门并具有巨大的潜力&#xff0c;能够显著提升开发者日常的工作效率、自动化日常琐碎、重复性任务&#xff0c;并生成全新的内容。Agent可以理解用户…...

【Nacos】负载均衡

目录 前言 一、服务下线二、权重配置三、同一个集群优先访问四、环境隔离 前言 我们的生产环境相对是比较恶劣的&#xff0c;我们需要对服务的流量进行更加精细的控制.Nacos支持多种负载均衡策略&#xff0c;包括配置权重&#xff0c;同机房&#xff0c;同地域&#xff0c;同环…...

小智 AI 聊天机器人

小智 AI 聊天机器人 &#xff08;XiaoZhi AI Chatbot&#xff09; &#x1f449;参考源项目复现 &#x1f449; ESP32SenseVoiceQwen72B打造你的AI聊天伴侣&#xff01;【bilibili】 &#x1f449; 手工打造你的 AI 女友&#xff0c;新手入门教程【bilibili】 项目目的 本…...

HTML一般标签和自闭合标签介绍

在HTML中&#xff0c;标签用于定义网页内容的结构和样式。标签通常分为两类&#xff1a;一般标签&#xff08;也称为成对标签或开放闭合标签&#xff09;和自闭合标签&#xff08;也称为空标签或自结束标签&#xff09;。 以下是这两类标签的详细说明&#xff1a; 一、一般标…...

怎么用u盘怎么重装系统_用u盘重装系统详细图文教程【新手教程】

怎么用u盘怎么重装系统&#xff1f;如果需要重装操作系统的话&#xff0c;以往采用光盘使用的比较多&#xff0c;随着技术的进步&#xff0c;用u盘制作一个启动盘安装系统比较方便&#xff0c;只需要用u盘制作好pe启动盘就可以帮助别人安装系统了&#xff0c;那么用u盘怎么重装…...

记录一次k8s起不来的排查过程

我在k8s集群&#xff0c;重启了一个node宿主机&#xff0c;竟然发现kubelet起不来了&#xff01;报错如下 这个报错很模糊&#xff0c;怎么排查呢。这样&#xff0c;开两个界面&#xff0c;一个重启kubelet&#xff0c;一个看系统日志(/var/log/message:centos&#xff0c;/va…...

代码练习2

求数组中的第二大值 #include <stdio.h> #include <stdlib.h> int main() {int arr[10]{1,9,2,8,7,3,4,6,5,10};int first, second,i;if (arr[0] > arr[1]) {first arr[0];second arr[1];} else {first arr[1];second arr[0];}for(i 2; i < 10; i) {if…...

2.1.3 第一个工程,点灯!

新建工程 点击菜单栏左上角&#xff0c;新建工程或者选择“文件”-“新建工程”&#xff0c;选择工程类型“标准工程”选择设备类型和编程语言&#xff0c;并指定工程文件名及保存路径&#xff0c;如下图所示&#xff1a; 选择工程类型为“标准工程” 选择主模块机型&#x…...

Qt Designer and Python: Build Your GUI

1.install pyside6 2.pyside6-designer.exe 发送到桌面快捷方式 在Python安装的所在 Scripts 文件夹下找到此文件。如C:\Program Files\Python312\Scripts 3. 打开pyside6-designer 设计UI 4.保存为simple.ui 文件&#xff0c;再转成py文件 用代码执行 pyside6-uic.exe simpl…...

蓝桥杯LQ1044 求完数

题目描述 因子&#xff1a;因子也叫因数&#xff0c;例如3515&#xff0c;那么3和5是15的因子。 同时15115&#xff0c;那么1和15也是15的因子。 1&#xff0c;3&#xff0c;5&#xff0c;15 这四个因子是15的所有因子。 完数&#xff1a;如果一个数等于不含它本身的其他因子之…...

消息队列篇--通信协议篇--TCP和UDP(3次握手和4次挥手,与Socket和webSocket的概念区别等)

1、TCP和UDP概述 TCP&#xff08;传输控制协议&#xff0c;Transmission Control Protocol&#xff09;和UDP&#xff08;用户数据报协议&#xff0c;User Datagram Protocol&#xff09;都算是最底层的通信协议&#xff0c;它们位于OSI模型的传输层。*传输层的主要职责是确保…...

YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

摘要 一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合 (ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。 # 理论介绍 目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,…...

Elastic Agent 对 Kafka 的新输出:数据收集和流式传输的无限可能性

作者&#xff1a;来 Elastic Valerio Arvizzigno, Geetha Anne 及 Jeremy Hogan 介绍 Elastic Agent 的新功能&#xff1a;原生输出到 Kafka。借助这一最新功能&#xff0c;Elastic 用户现在可以轻松地将数据路由到 Kafka 集群&#xff0c;从而实现数据流和处理中无与伦比的可扩…...

论文速读|Is Cosine-Similarity of Embeddings Really About Similarity?WWW24

论文地址&#xff1a; https://arxiv.org/abs/2403.05440 https://dl.acm.org/doi/abs/10.1145/3589335.3651526 bib引用&#xff1a; inproceedings{Steck_2024, series{WWW ’24},title{Is Cosine-Similarity of Embeddings Really About Similarity?},url{http://dx.doi.o…...

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…...

基于 Node.js 的天气查询系统实现(附源码)

项目概述 这是一个基于 Node.js 的全栈应用,前端使用原生 JavaScript 和 CSS,后端使用 Express 框架,通过调用第三方天气 API 实现天气数据的获取和展示。 主要功能 默认显示多个主要城市的天气信息 支持城市天气搜索 响应式布局设计 深色主题界面 优雅的加载动画 技术栈 …...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...