当前位置: 首页 > news >正文

YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发


在这里插入图片描述


摘要

一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合 (ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。


# 理论介绍

目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适应融合权重,过滤掉无用的或冲突的信息,只保留有助于检测的特征,从而提高特征的尺度不变性。ASFF核心步骤如下:

  • 特征重缩放:首先将不同层次的特征进行上采样或下采样,使它们具有相同的分辨率。

  • 自适应融合:对每个层次的特征,模型学习空间位置的权重参数,自动决定每个位置该融合哪些特征,并通过Softmax函数保证权重总和为1。融合后的特征用于目标检测。

  • 梯度一致性优化:通过自适应融合,ASFF能够在梯度传播过程中减少不同特征层之间的冲突,优化训练过程中的梯度一致性

ASFF自适应空间特征融合机制的工作原理如下图(摘自论文):
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

下文都是手把手教程,跟着操作即可添加成功


目录

  • 摘要
  • # 理论介绍
  • 🎓一、YOLOv9原始版本代码下载
    • 🍀🍀1.yolov9模型结构图
    • 🍀🍀2.环境配置
  • 🎓二、检测头代码
  • 🎓三、

相关文章:

YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

摘要 一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合 (ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。 # 理论介绍 目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,…...

Elastic Agent 对 Kafka 的新输出:数据收集和流式传输的无限可能性

作者:来 Elastic Valerio Arvizzigno, Geetha Anne 及 Jeremy Hogan 介绍 Elastic Agent 的新功能:原生输出到 Kafka。借助这一最新功能,Elastic 用户现在可以轻松地将数据路由到 Kafka 集群,从而实现数据流和处理中无与伦比的可扩…...

论文速读|Is Cosine-Similarity of Embeddings Really About Similarity?WWW24

论文地址: https://arxiv.org/abs/2403.05440 https://dl.acm.org/doi/abs/10.1145/3589335.3651526 bib引用: inproceedings{Steck_2024, series{WWW ’24},title{Is Cosine-Similarity of Embeddings Really About Similarity?},url{http://dx.doi.o…...

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”,它们分别为: 强变化;弱变化;局部重绘; 在Discord里分别都是用命令唤出的,但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中,我们发觉这样的逆天…...

基于 Node.js 的天气查询系统实现(附源码)

项目概述 这是一个基于 Node.js 的全栈应用,前端使用原生 JavaScript 和 CSS,后端使用 Express 框架,通过调用第三方天气 API 实现天气数据的获取和展示。 主要功能 默认显示多个主要城市的天气信息 支持城市天气搜索 响应式布局设计 深色主题界面 优雅的加载动画 技术栈 …...

时序数据库的使用场景

文章目录 前言一、特点二、工作原理三、常见的时序数据库四、使用场景优势总结 前言 时序数据库(Time Series Database, TSDB) 是一种专门设计用于存储和处理时序数据的数据库。时序数据是指按照时间顺序排列的数据,其中每个数据点通常包含时…...

计算机的错误计算(二百二十二)

摘要 利用大模型化简计算 实验表明,虽然结果正确,但是,大模型既绕了弯路,又有数值计算错误。 与前面相同,再利用同一个算式看看另外一个大模型的化简与计算能力。 例1. 化简计算摘要中算式。 下面是与一个大模型的…...

ThinkPHP 8模型与数据的插入、更新、删除

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《2025新书 ThinkPHP 8高效构建Web应用 编程与应用开发丛书 夏磊 清华大学出版社教材书籍 9787302678236 ThinkPHP 8高效构建Web应用》【摘要 书评 试读】- 京东图书 使用VS Code开发ThinkPHP项目-CSDN博客 编程与应用开…...

c语言函数(详解)

目录 前言 一、函数的基本概念和作用 二、函数的声明和定义 三、函数参数的传递方式 四、函数的递归 五、函数指针 总结 前言 本文主要讲解了c语言函数方面的内容 函数的定义和调用函数的返回值和参数函数的作用域和生命周期 函数的声明和定义 函数声明和函数定义的区别函数声…...

为AI聊天工具添加一个知识系统 之70 详细设计 之11 维度运动控制的应用:上下文受控的自然语言

本文要点 要点 前面我们 讨论了 “维度”及其运动控制原理 以及 维度控制 如何在中台微服务架构中撑起了“架构师”角色的一片天。下面我们从 “维度”运动控制的一个典型应用场景:受控的自然语言 ”开始讨论。 拼块文字型风格: 维度运动控制下的受控自然语言…...

ios打包:uuid与udid

ios的uuid与udid混乱的网上信息 新人开发ios,发现uuid和udid在网上有很多帖子里是混淆的,比如百度下,就会说: 在iOS中使用UUID(通用唯一识别码)作为永久签名,通常是指生成一个唯一标识&#xf…...

数组,对象解构,forEach方法,filter方法

数组解构 对象结构 遍历数组 forEach方法 筛选数组 filter方法 渲染商品案例 forEach遍历数组,能得到每个数组中的数据,item是对象中的每个元素 将遍历的数组中每个对象 加到 str 中 将 str 字符串中的 8 个 div 添加到 list盒子中 对象解构并渲染 综…...

PSPNet

文章目录 摘要Abstract1. 引言2. 框架2.1 金字塔池化模块2.2 特征提取器的监督2.3 训练细节 3. 创新点和不足3.1 创新点3.2 不足 参考总结 摘要 PSPNet是一个改进了FCN-8s缺点的语义分割模型,它解决了FCN-8s的缺点——分割不够精细以及没有考虑上下文信息。PSPNet的…...

论文阅读的附录(七):Understanding Diffusion Models: A Unified Perspective(二):公式46的推导

Understanding Diffusion Models: A Unified Perspective(二):公式46的推导 文章概括要推导的公式1. 条件概率的定义2. 联合分布的分解2.1 联合分布的定义2.2 为什么可以这样分解?2.3 具体意义 3. 分母的分解:边际化规…...

BGP分解实验·12——配置路由反射器

当一个AS包含多个iBGP对等体时,路由反射器(Route-Reflector)非常有用,因为相对于iBGP路由反射器指定的客户端只需要和路由反射器建立邻居关系,从而降低了iBGP全互连的连接数量。路由反射器(RR)和…...

PCIe 个人理解专栏——【2】LTSSM(Link Training and Status State Machine)

前言: 链路训练和状况状态机LTSSM(Link Training and Status State Machine)是整个链路训练和运行中状态的状态转换逻辑关系图,总共有11个状态。 正文: 包括检测(Detect),轮询&…...

cmake 编译QT之JKQtPlotter-4.0.3

cmake 编译 JKQtPlotter-4.0.3 1.下载源码 源码地址:https://github.com/jkriege2/JKQtPlotter 2.编译 mkdir build cd buildDCMAKE_PREFIX_PATH指编译器目录 D:\ProgramFiles\cmake-3.25.0-rc1-windows-i386\bin\cmake.exe -G "Visual Studio 16 2019&qu…...

【C】memory 详解

<memory.h> 是一个 C 标准库头文件&#xff0c;提供了一组内存管理函数&#xff0c;用于分配、释放和操作动态内存。这些函数主要操作的是未初始化的内存块&#xff0c;是早期 C 编程中常用的内存操作工具。 尽管在现代 C 编程中更推荐使用<cstring>或<memory&…...

Python 爬虫 - Selenium 框架

Python 爬虫 - Selenium 框架 安装安装 Selenium安装 WebDriver 操作浏览器打开浏览器普通方式加载配置方式Headless 方式 设置浏览器窗口最大化显示最小化显示自定义大小 前进后退前进后退 元素定位根据 id 定位根据 name 定位根据 class 定位根据标签名定位使用 CSS 定位使用…...

mysql的having语句

MySQL的HAVING语句用于在GROUP BY子句对数据进行分组后&#xff0c;过滤满足特定条件的组。与WHERE子句不同&#xff0c;HAVING子句可以在过滤条件中使用聚合函数&#xff0c;而WHERE子句则不能。通常&#xff0c;HAVING子句与GROUP BY子句一起使用&#xff0c;以实现对分组数据…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...