当前位置: 首页 > news >正文

通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)

大家对于智能体代理Agent一定已经非常熟悉,自主代理(Autonomous Agents) 目前在AI行业极其热门并具有巨大的潜力,能够显著提升开发者日常的工作效率、自动化日常琐碎、重复性任务,并生成全新的内容。Agent可以理解用户的请求,并通过后端集成的工具来满足用户们这些需求,而无需手动设置具体的执行步骤。

在本篇文章中,小李哥会带大家手把手了解如何使用Amazon Bedrock和其标准化Converse API轻松创建一个自定义AI智能体。下面我将通过利用Streamlit框架开发的应用,在浏览器中与后端代理进行交互分析自媒体文章里的情感倾向。我为代理配备了一个网页检索服务用于获取网页内容和总结网页信息,最后将以上信息总结分析社交媒体帖子的情感倾向。除了本文介绍的场景外,智能体也可以应用于来许多实用的应用场景。

解决方案概览

本次介绍的云端解决方案由几个关键组件组成,我们将通过这些组件搭建代理,关键组件如下:

  • agent.py - 运行代理的核心逻辑
  • tools.py - 定义代理可使用的工具
  • utils.py - 代理辅助函数
  • streamlit_app.py - 与代理交互的前端UI

方案架构图如下:

AI智能体核心运行逻辑解析

我们方案中的agent.py文件包含代理运行的核心逻辑,下面是工作流程图和逐步解析:

1. 用户输入一条消息,该消息会按照Converse API的格式转换为为用户消息(User Message)。

2. 格式化后的用户消息被添加到消息列表(Message List)中。

3. 代理通过Converse API调用Bedrock上的大语言模型(LLM),并传递第二步中包括用户输入的消息列表,以及代理可用的工具类型。

4. Bedrock上的大语言模型会返回助手消息(Assistant Message),其中可能包含文本、工具调用记录以及会话停止标识(stopReason)。

6.代理检查stopReason,它可能是:

tool_use:表示LLM已决定调用某个工具;

end_turn:表示LLM已完成工具调用,并结束当前的用户交互会话;

7. 如果stopReason是tool_use,则会话未结束,代理接下来会继续调用其集成的工具完成任务。

8. 继续执行被调用的工具后返回调用结果(toolResult)。

9. toolResult被封装为用户消息,并追加到消息列表末尾。

10. 代理再次开启新一轮调用Converse API,并重复执行步骤4至9,直到接收到stopReason的值为end_turn。

11. 当stopReason为end_turn时,裁表示该代理需要执行的全部任务已完成,代理的任务周期结束。

12. 最终代理调用AI模型的的响应会作为回复在用户界面返回给用户。用户此时可以继续输入新的消息,该流程将从步骤1重新开始。

使用场景测试展示

下图展示了该Agent在Streamlit框架开发的前端UI界面中的使用案例。我们输入提示词,请求代理对提供的链接进行总结。我们Agent中使用AI模型会自动决策需要使用后端集成工具,并首先调用 RetrieveUrlTool工具来获取网页内容。在该工具检索网页内容后,代理使用html2text工具预处理了提取内容,最后将网页转换为Markdown格式,作为toolResult结果返回给代理。代理处理了 toolResult结果生成最终响应返回给用户,UI中展示响应则为包含网页内容的总结摘要。

以上就是亚马逊云科技上通过自定义智能体抓取网页结果、进行格式转换,并在streamlit框架的用户界面中展示网页提取内容的全部内容,在本系列的下篇中,小李哥将分享构建该自定义智能体的全部代码和实操步骤。欢迎大家关注小李哥和本系列的下篇,不要错过未来更多国际前沿的AWS云开发/云架构方案。 

相关文章:

通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)

大家对于智能体代理Agent一定已经非常熟悉,自主代理(Autonomous Agents) 目前在AI行业极其热门并具有巨大的潜力,能够显著提升开发者日常的工作效率、自动化日常琐碎、重复性任务,并生成全新的内容。Agent可以理解用户…...

【Nacos】负载均衡

目录 前言 一、服务下线二、权重配置三、同一个集群优先访问四、环境隔离 前言 我们的生产环境相对是比较恶劣的,我们需要对服务的流量进行更加精细的控制.Nacos支持多种负载均衡策略,包括配置权重,同机房,同地域,同环…...

小智 AI 聊天机器人

小智 AI 聊天机器人 (XiaoZhi AI Chatbot) 👉参考源项目复现 👉 ESP32SenseVoiceQwen72B打造你的AI聊天伴侣!【bilibili】 👉 手工打造你的 AI 女友,新手入门教程【bilibili】 项目目的 本…...

HTML一般标签和自闭合标签介绍

在HTML中,标签用于定义网页内容的结构和样式。标签通常分为两类:一般标签(也称为成对标签或开放闭合标签)和自闭合标签(也称为空标签或自结束标签)。 以下是这两类标签的详细说明: 一、一般标…...

怎么用u盘怎么重装系统_用u盘重装系统详细图文教程【新手教程】

怎么用u盘怎么重装系统?如果需要重装操作系统的话,以往采用光盘使用的比较多,随着技术的进步,用u盘制作一个启动盘安装系统比较方便,只需要用u盘制作好pe启动盘就可以帮助别人安装系统了,那么用u盘怎么重装…...

记录一次k8s起不来的排查过程

我在k8s集群,重启了一个node宿主机,竟然发现kubelet起不来了!报错如下 这个报错很模糊,怎么排查呢。这样,开两个界面,一个重启kubelet,一个看系统日志(/var/log/message:centos,/va…...

代码练习2

求数组中的第二大值 #include <stdio.h> #include <stdlib.h> int main() {int arr[10]{1,9,2,8,7,3,4,6,5,10};int first, second,i;if (arr[0] > arr[1]) {first arr[0];second arr[1];} else {first arr[1];second arr[0];}for(i 2; i < 10; i) {if…...

2.1.3 第一个工程,点灯!

新建工程 点击菜单栏左上角&#xff0c;新建工程或者选择“文件”-“新建工程”&#xff0c;选择工程类型“标准工程”选择设备类型和编程语言&#xff0c;并指定工程文件名及保存路径&#xff0c;如下图所示&#xff1a; 选择工程类型为“标准工程” 选择主模块机型&#x…...

Qt Designer and Python: Build Your GUI

1.install pyside6 2.pyside6-designer.exe 发送到桌面快捷方式 在Python安装的所在 Scripts 文件夹下找到此文件。如C:\Program Files\Python312\Scripts 3. 打开pyside6-designer 设计UI 4.保存为simple.ui 文件&#xff0c;再转成py文件 用代码执行 pyside6-uic.exe simpl…...

蓝桥杯LQ1044 求完数

题目描述 因子&#xff1a;因子也叫因数&#xff0c;例如3515&#xff0c;那么3和5是15的因子。 同时15115&#xff0c;那么1和15也是15的因子。 1&#xff0c;3&#xff0c;5&#xff0c;15 这四个因子是15的所有因子。 完数&#xff1a;如果一个数等于不含它本身的其他因子之…...

消息队列篇--通信协议篇--TCP和UDP(3次握手和4次挥手,与Socket和webSocket的概念区别等)

1、TCP和UDP概述 TCP&#xff08;传输控制协议&#xff0c;Transmission Control Protocol&#xff09;和UDP&#xff08;用户数据报协议&#xff0c;User Datagram Protocol&#xff09;都算是最底层的通信协议&#xff0c;它们位于OSI模型的传输层。*传输层的主要职责是确保…...

YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发

摘要 一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合 (ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。 # 理论介绍 目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,…...

Elastic Agent 对 Kafka 的新输出:数据收集和流式传输的无限可能性

作者&#xff1a;来 Elastic Valerio Arvizzigno, Geetha Anne 及 Jeremy Hogan 介绍 Elastic Agent 的新功能&#xff1a;原生输出到 Kafka。借助这一最新功能&#xff0c;Elastic 用户现在可以轻松地将数据路由到 Kafka 集群&#xff0c;从而实现数据流和处理中无与伦比的可扩…...

论文速读|Is Cosine-Similarity of Embeddings Really About Similarity?WWW24

论文地址&#xff1a; https://arxiv.org/abs/2403.05440 https://dl.acm.org/doi/abs/10.1145/3589335.3651526 bib引用&#xff1a; inproceedings{Steck_2024, series{WWW ’24},title{Is Cosine-Similarity of Embeddings Really About Similarity?},url{http://dx.doi.o…...

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…...

基于 Node.js 的天气查询系统实现(附源码)

项目概述 这是一个基于 Node.js 的全栈应用,前端使用原生 JavaScript 和 CSS,后端使用 Express 框架,通过调用第三方天气 API 实现天气数据的获取和展示。 主要功能 默认显示多个主要城市的天气信息 支持城市天气搜索 响应式布局设计 深色主题界面 优雅的加载动画 技术栈 …...

时序数据库的使用场景

文章目录 前言一、特点二、工作原理三、常见的时序数据库四、使用场景优势总结 前言 时序数据库&#xff08;Time Series Database, TSDB&#xff09; 是一种专门设计用于存储和处理时序数据的数据库。时序数据是指按照时间顺序排列的数据&#xff0c;其中每个数据点通常包含时…...

计算机的错误计算(二百二十二)

摘要 利用大模型化简计算 实验表明&#xff0c;虽然结果正确&#xff0c;但是&#xff0c;大模型既绕了弯路&#xff0c;又有数值计算错误。 与前面相同&#xff0c;再利用同一个算式看看另外一个大模型的化简与计算能力。 例1. 化简计算摘要中算式。 下面是与一个大模型的…...

ThinkPHP 8模型与数据的插入、更新、删除

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《2025新书 ThinkPHP 8高效构建Web应用 编程与应用开发丛书 夏磊 清华大学出版社教材书籍 9787302678236 ThinkPHP 8高效构建Web应用》【摘要 书评 试读】- 京东图书 使用VS Code开发ThinkPHP项目-CSDN博客 编程与应用开…...

c语言函数(详解)

目录 前言 一、函数的基本概念和作用 二、函数的声明和定义 三、函数参数的传递方式 四、函数的递归 五、函数指针 总结 前言 本文主要讲解了c语言函数方面的内容 函数的定义和调用函数的返回值和参数函数的作用域和生命周期 函数的声明和定义 函数声明和函数定义的区别函数声…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

理想汽车5月交付40856辆,同比增长16.7%

6月1日&#xff0c;理想汽车官方宣布&#xff0c;5月交付新车40856辆&#xff0c;同比增长16.7%。截至2025年5月31日&#xff0c;理想汽车历史累计交付量为1301531辆。 官方表示&#xff0c;理想L系列智能焕新版在5月正式发布&#xff0c;全系产品力有显著的提升&#xff0c;每…...

可视化预警系统:如何实现生产风险的实时监控?

在生产环境中&#xff0c;风险无处不在&#xff0c;而传统的监控方式往往只能事后补救&#xff0c;难以做到提前预警。但如今&#xff0c;可视化预警系统正在改变这一切&#xff01;它能够实时收集和分析生产数据&#xff0c;通过直观的图表和警报&#xff0c;让管理者第一时间…...