当前位置: 首页 > news >正文

动手学强化学习(四)——蒙特卡洛方法

一、蒙特卡洛方法

        蒙特卡洛方法是一种无模型(Model-Free)的强化学习算法,它通过直接与环境交互采样轨迹(episodes)来估计状态或动作的价值函数(Value Function),而不需要依赖环境动态模型(如转移概率矩阵 P(s′∣s,a)和奖励函数 R(s,a)的显式知识)。简单来说,我们前面来说的策略都是通过公式推导出公式q,但是蒙特卡洛可以直接通过数据量来推出q,这样就省略勒模型

        假设,有一枚硬币,抛硬币后,若正面朝上,定义随机变量X=1;若反面朝上X=-1,。目标是计算X的期望E(X)。

        基于Model-base的方法,基于已知的概率模型,概率都为0.5,那么期望计算公式E(X)=0.5*1+0.5*(-1)=0

        如果通过蒙特卡洛方法,就直接从数据入手。通过多次独立地抛硬币进行采样。比如,抛次硬币,假设得到6次正面,4次反面,对应的值分别为1和-1,计算这次采样的平均值为(6-4)/10 = 0.2,用这个平均数来近似期望。当抛硬币的次数逐渐增大时,根据大数定律,样本均值会越来越趋近于随机变量的期望值。

二、 MC Basic

        MC Basic 是蒙特卡洛方法的一种简单实现,结合了策略评估(Policy Evaluation)和策略改进(Policy Improvement)的迭代过程,属于基于策略迭代(Policy Iteration)的无模型算法。在强化学习中,要计算在策略pi下的状态 - 动作值函数 q(s,a),即从状态出发,采取动作a后,遵循策略pi所获得的期望回报。

        从状态s出发,采取动作a,然后按照策略pi在环境中进行交互,直到到达终止状态,这一过程称为一个 episode,得到一个回报 g(s,a)。重复上述过程多次,得到多个回报,对这些回报取平均值

\frac{1}{n}\sum_{j=1}^ng^{(j)}(s,a)

        随着采样次数的增加,该估计会越来越接近真实的。

2.1 网格世界的蒙特卡洛

        在一个M * N 的网格世界中,智能体需要从一个位置移动到另一个位置。每个网格可能有不同的奖励值,例如,有些网格代表正奖励,有些代表负奖励,还有些可能是障碍。智能体要学习一个策略,以最大化从起始状态到终止状态的累积奖励。

        智能体从初始状态 s0 开始,按照当前策略选择动作进行移动。假设在某一时刻智能体处于状态,根据策略选择动作,然后转移到下一个状态,并获得奖励。重复这个过程,直到到达终止状态,形成一个 episode,如(s0,a0,r0,s1,a1,r1,...,st,at,r),其中T是终止时刻,该 episode 的回报

\mathrm{}G=\sum_{t=0}^T\gamma^tr_t

2.2 首次访问法

        对于每个状态 - 动作对(s,a),只考虑在一个 episode 中第一次访问到(s,a)时后续所获得的回报来估计qpi(s,a)。例如,在一个 episode 中多次访问到(s,a),但只使用第一次访问后得到的回报 G 来更新对qpi(s,a)的估计。若有n个 episode 中首次访问到(s,a),得到的回报分别为G1,G2,G3...,则的估计值为\frac{1}{n}\sum_{i=1}^nG_i

2.3 每次访问法

        对于每个状态 - 动作对(s,a),在一个 episode 中每次访问到(s,a)时后续所获得的回报都用于估计qpi(s,a)。即每次访问到(s,a)都记录下后续的回报,然后对所有这些回报求平均值来更新qpi(s,a)的估计。

        同样使用贪心策略来迭代到最终

相关文章:

动手学强化学习(四)——蒙特卡洛方法

一、蒙特卡洛方法 蒙特卡洛方法是一种无模型(Model-Free)的强化学习算法,它通过直接与环境交互采样轨迹(episodes)来估计状态或动作的价值函数(Value Function),而不需要依赖环境动态…...

网络原理(3)—— 传输层详解

目录 一. 再谈端口号 二. UDP协议(用户数据报协议) 2.1 UDP协议端格式 2.2 UDP报文长度 2.3 UDP校验和 三. TCP协议(传输控制协议) 3.1 TCP协议段格式 3.2 核心机制 3.2.1 确认应答 —— “感知对方是否收到” 3.2.2 超时重传 3.3.3 连接管理 —— 三次握手与四…...

2025美赛美国大学生数学建模竞赛A题完整思路分析论文(43页)(含模型、可运行代码和运行结果)

2025美国大学生数学建模竞赛A题完整思路分析论文 目录 摘要 一、问题重述 二、 问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.1.4问题1样例代码运行结果&…...

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…...

Python-基于PyQt5,pdf2docx,pathlib的PDF转Word工具

前言:日常生活中,我们常常会跟WPS Office打交道。作表格,写报告,写PPT......可以说,我们的生活已经离不开WPS Office了。与此同时,我们在这个过程中也会遇到各种各样的技术阻碍,例如部分软件的PDF转Word需要收取额外费用等。那么,可不可以自己开发一个小工具来实现PDF转…...

小程序-视图与逻辑

前言 1. 声明式导航 open-type"switchTab"如果没有写这个,因为是tabBar所以写这个,就无法跳转。路径开始也必须为斜线 open-type"navigate"这个可以不写 现在开始实现后退的效果 现在我们就在list页面里面实现后退 2.编程式导航…...

UE5制作视差图

双目深度估计开源数据集很多都是用UE制作的,那么我们自己能否通过UE制作自己想要的场景的数据集呢。最近花了点时间研究了一下,分享给需要的小伙伴。 主要使用的是UnrealCV插件,UnrealCV是一个开源项目,旨在帮助计算机视觉研究人…...

海浪波高预测(背景调研)

#新星杯14天创作挑战营第7期# ps:图片由通义千问生成 历史工作: 针对更高细粒度、更高精度的波浪高度预测任务: Mumtaz Ali 等人提出了一种多元线性回归模型(MLR-CWLS),该模型利用协方差加权最小二乘法&a…...

代码随想录算法训练营第四十二天-动态规划-股票-188.买卖股票的最佳时机IV

题目要求进行k次买卖其实就是上一题的扩展,把2次扩展为k次定义动规数组依然是二维,第一个维度表示第几天,第二个维度表示第几次买入和卖出所以第二个维度的长度应该是2k1在for循环内,要使用一个内循环来表示第几次买入或卖出&…...

Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)

文章目录 Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)settings.gradle.kts 基础配置选项单项目配置多项目配置 高级配置选项插件管理(Plugin Management)基础配置模板案例:Android项目标准配…...

软件工程经济学-日常作业+大作业

目录 一、作业1 作业内容 解答 二、作业2 作业内容 解答 三、作业3 作业内容 解答 四、大作业 作业内容 解答 1.建立层次结构模型 (1)目标层 (2)准则层 (3)方案层 2.构造判断矩阵 (1)准则层判断矩阵 (2)方案层判断矩阵 3.层次单排序及其一致性检验 代码 …...

论文阅读(三):微阵列数据的图形模型和多变量分析

1.论文链接:Graphical Models and Multivariate Analysis of Microarray Data 摘要: 基因表达数据的通常分析忽略了基因表达值之间的相关性。从生物学上讲,这种假设是不合理的。本章介绍的方法允许通过稀疏高斯图形模型来描述基因之间的相关…...

【大模型LLM面试合集】大语言模型架构_MHA_MQA_GQA

MHA_MQA_GQA 1.总结 在 MHA(Multi Head Attention) 中,每个头有自己单独的 key-value 对;标准的多头注意力机制,h个Query、Key 和 Value 矩阵。在 MQA(Multi Query Attention) 中只会有一组 k…...

向上调整算法(详解)c++

算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 这里为什么插入85完后合法? 我们插入一个85,…...

【Transformer】手撕Attention

import torch from torch import nn import torch.functional as F import mathX torch.randn(16,64,512) # B,T,Dd_model 512 # 模型的维度 n_head 8 # 注意力头的数量多头注意力机制 class multi_head_attention(nn.Module): def __init__(self, d_model, n_hea…...

844.比较含退格的字符串

目录 题目思路解法收获 题目 给定 s 和 t 两个字符串,当它们分别被输入到空白的文本编辑器后,如果两者相等,返回 true 。# 代表退格字符。 注意:如果对空文本输入退格字符,文本继续为空。 思路 如何解退格之后left…...

图书管理系统 Axios 源码__编辑图书

目录 功能概述: 代码实现(index.js): 代码解析: 图书管理系统中,删除图书功能是核心操作之一。下是基于 HTML、Bootstrap、JavaScript 和 Axios 实现的删除图书功能的详细介绍。 功能概述: …...

LabVIEW纤维集合体微电流测试仪

LabVIEW开发纤维集合体微电流测试仪。该设备精确测量纤维材料在特定电压下的电流变化,以分析纤维的结构、老化及回潮率等属性,对于纤维材料的科学研究及质量控制具有重要意义。 ​ 项目背景 在纤维材料的研究与应用中,电学性能是评估其性能…...

Commander 一款命令行自定义命令依赖

一、安装 commander 插件 npm install commander 二、基本用法 1. 创建一个简单的命令行程序 创建一个 JavaScript 文件,例如 mycli.js,并添加以下代码: // 引入 commander 模块并获取 program 对象。const { program } require("…...

Day24 洛谷普及2004(内涵前缀和与差分算法)

零基础洛谷刷题记录 Day01 2024.11.18 Day02 2024.11.25 Day03 2024.11.26 Day04 2024.11.28 Day05 2024.11.29 Day06 2024 12.02 Day07 2024.12.03 Day08 2024 12 05 Day09 2024.12.07 Day10 2024.12.09 Day11 2024.12.10 Day12 2024.12.12 Day13 2024.12.16 Day14 2024.12.1…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

GitHub 趋势日报 (2025年06月06日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

day36-多路IO复用

一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...

git: early EOF

macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...