react redux用法学习
参考资料:
https://www.bilibili.com/video/BV1ZB4y1Z7o8
https://cn.redux.js.org/tutorials/essentials/part-5-async-logic
AI工具:deepseek,通义灵码
安装相关依赖:
使用redux的中间件:
npm i react-redux
react-redux 并不是另一个 redux,而是对 redux 做了封装

npm i @reduxjs/toolkit
更好的使用 react-redux 的工具
构建目录

store示例代码:
index.js
import { configureStore } from "@reduxjs/toolkit";import channelReducer from "./modules/channelStore";const store = configureStore({reducer: {channelReducer: channelReducer,}
})export default store;
modules/xxx.js
import { createSlice } from "@reduxjs/toolkit";import { getStoreList } from "../../utils/http";const counterSlice = createSlice({name: "counter",initialState: {channelList: [], },reducers: {setChannel(state, action) {// 不能计算随机值,因为reducer是纯函数,不能有副作用state.channelList = action.payload},setChannel1: {reducer(state, action) {console.log("state -- ", state)console.log("action -- ", action)// state.push(action.payload)},prepare(title, content) {console.log("title -- ", title)console.log("content -- ", content)return {payload: {id: 1,title,content}}}}}
})const { setChannel, setChannel1 } = channelSlice.actions// 方法1
const fetchChannlList = async (dispatch) => {const response = await getStoreList()dispatch(setChannel(response.data.businessList))
}// 方法2
const fetchChannlList2 = () => async (dispatch) => {dispatch(setChannel1(1, 2))// const response = await getStoreList()// dispatch(setChannel(response.data.businessList))
}export {fetchChannlList,fetchChannlList2
};const reducer = channelSlice.reducer;export default reducer;
xxx.js为 modules 内独立redux模块
reducer内不要有类似生成随机数的逻辑,保证纯函数
reducers内的reducer可以是函数写法,也可以对象写法。对象写法会有reducer 与 prepare这两个回调函数可供使用。
prepare为该 setChannel1 获取的参数的收束,可在其中加工参数,生成随机数return
reducer为该 setChannel1 原参数,state、action
xxx.jsx
import { useSelector, useDispatch } from "react-redux";
import { useEffect } from 'react';import styles from './demo.module.css'import {fetchChannlList,fetchChannlList2
} from '../../store/modules/channelStore'const Demo = () => {const {channelList} = useSelector(state => state.channelReducer);const dispatch = useDispatch();useEffect(() => {// 方法1fetchChannlList(dispatch)// 方法2dispatch(fetchChannlList2())}, [])return (<div><h1>Hello World1</h1><p>Hello World</p><ul>{channelList.map(item => {return <li key={item.businessId}>{item.storeName}</li>})}</ul></div>)
}export default Demo;
其中 useSelector 可获取 redux 的 state,useDispatch 可触发 redux 的 action 修改 state。
代码中 方法2 是官网推荐方法,及将reducer的action引到jsx后,将方法放到dispatch里调用,reducer的异步方法为:
const fetchChannlList2 = () => async (dispatch) => {// dispatch(setChannel1(1, 2))const response = await getStoreList()dispatch(setChannel(response.data.businessList))
}
其中dispatch会在第二次回调中给出来
而 方法1 是我尝试使用的,reducer的异步方法为:
const fetchChannlList = async (dispatch) => {const response = await getStoreList()dispatch(setChannel(response.data.businessList))
}
fetchChannlList 直接就拿到了dispatch
目前得到的结果都是一致的
后续学习中再寻找方法2 比 方法1 更推荐的原因。
反思问题:
为什么 reducer 不能生成随机数,在我多次实验与查询后,生成随机数可能会有一下影响:
1.无法做test,没办法做断言测试(纯函数可做断言)
2.reducer中产生随机数可能导致组件多次更新,消耗更多性能
3.使用谷歌tool的时间旅行时,如果reducer中使用类似随机数逻辑可能导致 tool无法定位问题
未完待续
相关文章:
react redux用法学习
参考资料: https://www.bilibili.com/video/BV1ZB4y1Z7o8 https://cn.redux.js.org/tutorials/essentials/part-5-async-logic AI工具:deepseek,通义灵码 安装相关依赖: 使用redux的中间件: npm i react-reduxreact-…...
前端HTML标签 meta中常见的一些属性
meta中常见的一些属性 <meta/> 标签的属性 <meta/> 是什么? <meta/> 标签主要用于表示和当前文档相关的 元数据 信息。 而 元数据(metadata),简单的来说就是描述数据的数据。例如,一个 HTML 文件是一…...
127,【3】 buuctf [NPUCTF2020]ReadlezPHP
进入靶场 吓我一跳 查看源码 点击 审计 <?php// 定义一个名为 HelloPhp 的类,该类可能用于执行与日期格式化相关的操作 class HelloPhp {// 定义一个公共属性 $a,用于存储日期格式化的模板public $a;// 定义一个公共属性 $b,用于存储…...
继承(python)
一、基础知识 (一)定义:子类能继承父类所有的公有属性和公有方法(先使用子类的方法、属性) (二)格式: class 子类名(父类名): #父类 class Ph…...
驱动开发系列36 - Linux Graphics 2D 绘制流程
一: 概述 在Linux中,2D绘制流程是操作系统、图形库、显示协议、驱动程序等多个组件协调工作的结果。整体流程如下步骤所示: 1. 客户端请求:客户端程序(如GTK、Qt应用程序)通过X11协议与Xorg-Server通信(或通过Wayland协议与Wayland合成器通信)、请求绘制2D图形,比如绘制…...
STL函数算法笔记
STL函数算法笔记 今天我们来学习的是STL库中的一些函数。首先,STL这个东西大家一定非常熟悉,里面很多的数据结构都帮了大家不少忙,那么今天我们就来说几个重要的数据结构。 向量 向量,也就是数据结构vector,你也可以称之为动态数组,本质跟数组差不多,只不过有一些好处…...
【Vue】在Vue3中使用Echarts的示例 两种方法
文章目录 方法一template渲染部分js部分方法一实现效果 方法二template部分js or ts部分方法二实现效果 贴个地址~ Apache ECharts官网地址 Apache ECharts示例地址 官网有的时候示例显示不出来,属于正常现象,多进几次就行 开始使用前,记得先…...
小红书自动化:如何利用Make批量生成爆款笔记
小红书自动化:如何利用Make制作个人自媒体中心,批量生成爆款笔记 引言 在如今信息爆炸的时代,如何高效地获取和分享优质内容,成为了每位自媒体工作者必须面对的挑战。你是否想过,如果能够将这项繁复的工作实现自动化…...
学习率调整策略 | PyTorch 深度学习实战
前一篇文章,深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课:引…...
DeepSeekMoE 论文解读:混合专家架构的效能革新者
论文链接:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models 目录 一、引言二、背景知识(一)MoE架构概述(二)现有MoE架构的问题 三、DeepSeekMoE架构详解(一&a…...
以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案:
以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案: 一、系统概述 本系统采用双巨控GRM241Q模块构建4G无线物联网络,实现山上液位数据实时传输至山下水泵站,通过预设逻辑自动控制水泵启停,同时支持APP远程监控及人工…...
【JVM详解五】JVM性能调优
示例: 配置JVM参数运行 #前台运行 java -XX:MetaspaceSize-128m -XX:MaxMetaspaceSize-128m -Xms1024m -Xmx1024m -Xmn256m -Xss256k -XX:SurvivorRatio8 - XX:UseConcMarkSweepGC -jar /jar包路径 #后台运行 nohup java -XX:MetaspaceSize-128m -XX:MaxMetaspaceS…...
2.10日学习总结
题目一: AC代码 #include <stdio.h>#define N 1000000typedef long long l;int main() {int n, m;l s 0;l a[N 1], b[N 1];int i 1, j 1;scanf("%d %d", &n, &m);for (int k 1; k < n; k) {scanf("%lld", &a[k]);…...
疯狂前端面试题(四)
一、Ajax、JSONP、JSON、Fetch 和 Axios 技术详解 1. Ajax(异步 JavaScript 和 XML) 什么是 Ajax? Ajax 是一种用于在不刷新页面的情况下与服务器进行数据交互的技术。它通过 XMLHttpRequest 对象实现。 优点 - 支持同步和异步请求。 - 能…...
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-metrics.py
metrics.py ultralytics\utils\metrics.py 目录 metrics.py 1.所需的库和模块 2.def bbox_ioa(box1, box2, iouFalse, eps1e-7): 3.def box_iou(box1, box2, eps1e-7): 4.def bbox_iou(box1, box2, xywhTrue, GIoUFalse, DIoUFalse, CIoUFalse, eps1e-7): 5.def mas…...
SuperCopy解除网页禁用复制功能插件安装和使用
点击下载《SuperCopy解除网页禁用复制功能插件》 1. 前言 在当今数字化时代,网络已成为我们获取信息和知识的主要渠道。互联网如同一片浩瀚无垠的知识海洋,蕴藏着无数的资源,从学术论文到生活小窍门,从专业教程到娱乐资讯&#…...
UP-VLA:具身智体的统一理解与预测模型
25年1月来自清华大学和上海姚期智研究院的论文“UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent”。 视觉-语言-动作 (VLA) 模型的最新进展,利用预训练的视觉语言模型 (VLM) 来提高泛化能力。VLM 通常经过视觉语言理解任务的预训练&…...
Unity 基于状态机的逻辑控制详解
状态机是游戏开发中常用的逻辑控制方法,它可以将复杂的逻辑分解成多个独立的状态,并通过状态转移来控制逻辑的执行流程。本文将详细介绍如何在 Unity 中基于状态机实现逻辑控制,并提供技术详解和代码实现。 一、状态机简介 1.1 基本概念 状…...
傅里叶单像素成像技术研究进展
摘要:计算光学成像,通过光学系统和信号处理的有机结合与联合优化实现特定成像特性的成像系统,摆脱了传统成像系统的限制,为光学成像技术添加了浓墨重彩的一笔,并逐步向简单化与智能化的方向发展。单像素成像(Single-Pi…...
IDEA接入DeepSeek
IDEA 目前有多个途径可以接入deepseek,比如CodeGPT或者Continue,这里借助CodeGPT插件接入,CodeGPT目前用的人最多,相对更稳定 一、安装 1.安装CodeGPT idea插件市场找到CodeGPT并安装 2.创建API Key 进入deepseek官网…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
