使用API有效率地管理Dynadot域名,清除某一文件夹中域名的默认DNS设置
关于Dynadot
Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。
Dynadot平台操作教程索引(包括域名邮箱,解析,建站,优惠长期更新)
Dynadot.com提供的API是专为效率而构建的高级域名管理和获取工具包。在Dynadot平台上,我们提供了50多个命令来设置,管理,注册和竞标域名。
在了具体的功能API代码前,请阅读关于Dynadot的API使用须知。(外链)
使用DynadotAPI,我们可以自建文件夹并对文件夹中管理的域名进行统一的DNS域名设置。同样,我们也可以使用DynadotAPI清除当前某一文件夹的设置情况。
命令参数
如果发送清除文件夹设置的命令,则须包含下列参数:
设置清除文件夹设置请求参数 | 解释 |
folder_id | 您要设置的文件夹ID |
service | 您要清除的文件夹域名设置,它可以是 "forward", "stealth", "email_forwarding", "dns", 和 "nameservers" |
在成功发送文件夹清除设置的命令之后,返回的结果将以XML或是JSON格式的标签返回,其中XML的结果标签所代表含义由下图所示:
XML结果标签 | 解释 |
<SetClearFolderSettingResponse></SetClearFolderSettingResponse> | 响应XML文档的根节点 |
<SetClearFolderSettingHeader></SetClearFolderSettingHeader> | 响应标头 |
<SuccessCode></SuccessCode> | 如果操作成功,"0"为成功,"-1"为失败 |
<Status></Status> | 请求状态 |
<Error></Error> | 请求错误信息,仅状态为"error"时使用 |
示例
此处,使用API发送清除文件夹设置命令,统一清除文件夹0的域名服务器设置:
将高级域API请求发送到以下URL:https://api.dynadot.com/api3.xml。
则最后返回的参数为:
Request (XML format)
https://api.dynadot.com/api3.xml?key=[API Key]&command=set_clear_folder_setting&folder_id=0&service=nameservers
Response (XML format)
<SetClearFolderSettingResponse><SetClearFolderSettingHeader><SuccessCode>0</SuccessCode><Status>success</Status></SetClearFolderSettingHeader></SetClearFolderSettingResponse>
Request (JSON format)
https://api.dynadot.com/api3.json?key=[API Key]&command=set_clear_folder_setting&folder_id=0&service=nameservers
Response (JSON format)
{"SetClearFolderSettingResponse":{"ResponseCode":"0","Status":"success"}}
在网页中,其显示样式如下:(示例为实际操作。)
XML格式
JSON格式
相关文章:

使用API有效率地管理Dynadot域名,清除某一文件夹中域名的默认DNS设置
关于Dynadot Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮…...

2.11 sqlite3数据库【数据库的相关操作指令、函数】
练习: 将 epoll 服务器 客户端拿来用 客户端:写一个界面,里面有注册登录 服务器:处理注册和登录逻辑,注册的话将注册的账号密码写入数据库,登录的话查询数据库中是否存在账号,并验证密码是否正确…...

当 LSTM 遇上 ARIMA!!
大家好,我是小青 ARIMA 和 LSTM 是两种常用于时间序列预测的模型,各有优劣。 ARIMA 擅长捕捉线性关系,而 LSTM 擅长处理非线性和长时间依赖的关系。将ARIMA 和 LSTM 融合,可以充分发挥它们各自的优势,构建更强大的时…...

kali连接xshell
1.先保证宿主机:以太网适配器 VMware Network Adapter VMnet8 和kali(net 模式)在同一个网段 windows VMnet8开启 查看是否是自动获取ip ipv4 和ipv6一样的 查看 windows VMnet8的IPv4的地址 查看 kali 的IP地址 window ping的结果…...
图像曲率滤波
看到这么一个非常有意思的东西,记录一下 https://www.zhihu.com/question/35499791 https://zhuanlan.zhihu.com/p/22971865 GCFilter_talk.pdf_免费高速下载|百度网盘-分享无限制 https://github.com/YuanhaoGong/CurvatureFilter?tabreadme-ov-file...
TCP 和 UDP 可以绑定相同的端口吗?
前言 当一个网络接口接收到一个数据报时,IP 模块首先检查目的地址是否为自己的 IP 地址,如果是的话,数据报交付给由 IPv4 头部的协议字段指定的协议模块。 TCP 和 UDP 在内核中是两个完全独立的模块,送给 TCP/UDP 模块的报文根据…...

【Python网络爬虫】爬取网站图片实战
【Python网络爬虫】爬取网站图片实战 Scrapying Images on Website in Action By Jackson@ML *声明:本文简要介绍如何利用Python爬取网站数据图片,仅供学习交流。如涉及敏感图片或者违禁事项,请注意规避;笔者不承担相关责任。 1. 创建Python项目 1) 获取和安装最新版…...

2024年博客之星年度评选—创作影响力评审+主题文章创作评审目前排名(2024博客之星陪跑小分队助力2024博客之星创作者成长)
2024年博客之星年度评选—创作影响力评审主题文章创作评审目前排名 2024年博客之星主题文章创作评审文章得分公布!2024年博客之星创作影响力评审2024年博客之星主题文章创作评审目前排名公布! 【2024博客之星】恭喜完成✅主题创作的226位博主࿰…...

【CLIP系列】4:目标检测(ViLD、GLIP)
目录 1 ViLD2 GLIP2.1 前言2.2 损失计算2.3 模型框架 1 ViLD OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION 从标题就能看出来,作者是把CLIP模型当成一个Teacher,去蒸馏他自己的网络,从而能Zero Shot去…...

Qt Designer菜鸟使用教程(实现一个本地英文翻译软件)
1 安装Qt Designer 安装这个包的时候会自带安装 Qt Designer, 安装目录为python的安装根目录的 Lib/site-packages/qt5_applications/Qt/bin 目录下。 pip install pyqt5-tools2 新建窗体 2.1 新建主窗体 创建之后如下图: 设置主窗口大小: 设置窗…...
【一文读懂】HTTP与Websocket协议
HTTP协议 概述 HTTP (Hypertext Transfer Protocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏…...

大语言模型入门
大语言模型入门 1 大语言模型步骤1.1 pre-training 预训练1.1.1 从网上爬数据1.1.2 tokenization1.1.2.1 tokenization using byte pair encoding 1.3 预训练1.3.1 context1.3.2 training1.3.3 输出 1.2 post-training1.2.1 token 1.2 SFT监督微调1.3 人类反馈强化学习1.3.1 人…...
SQL 大厂面试题目(由浅入深)
今天给大家带来一份大厂SQL面试覆盖:基础语法 → 复杂查询 → 性能优化 → 架构设计,大家需深入理解执行原理并熟悉实际业务场景的解决方案。 1. 基础查询与过滤 题目:查询 employees 表中所有薪资(salary)大于 10000…...
Shader Step和frac函数
Step又称为阶跃函数,在着色器(Shader)编程中,step 函数是一个非常有用的函数,尤其是在GLSL(OpenGL Shading Language)和其他类似的着色器语言中。它用于生成基于阈值的阶跃函数输出。step 函数的…...

FreeRtos实时系统: 十二.FreeRTOS的队列集
FreeRtos实时系统: 十二.FreeRTOS的队列集 一.队列集简介二.队列集相关API函数三.队列集操作实验 一.队列集简介 左边的接收任务会在没接收到队列时会阻塞,如果前面释放信号量这时该任务也获取不到信号量。 右边使用队列集如果获取到,判断句柄是谁&#…...

NLP Word Embeddings
Word representation One-hot形式 在上一周介绍RNN类模型时,使用了One-hot向量来表示单词的方式。它的缺点是将每个单词视为独立的,算法很难学习到单词之间的关系。 比如下面的例子,即使语言模型已经知道orange juice是常用组合词…...
如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B
如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B 一、背景二、解决方案三、操作步骤1.下载模型2.安装依赖3.量化4.生成推理代码5.运行A.缓存上限为128条B.不限制缓存上限C.输出内容 一、背景 随着深度学习的不断发展,大型语言模型(LLM,L…...

2025年二级建造师报名流程图解
2025年二级建造师报名时间!附报名流程! ⏰️已公布25年二建考试时间的省份如下: ️4月19日、20日考试的城市有:贵州 ️5月10日、11日考试的城市有:湖北、陕西、宁夏、甘肃、福建、浙江、江西、黑龙江、河南、湖南、…...
深入浅出:Python 中的异步编程与协程
引言 大家好,今天我们来聊聊 异步编程 和 协程,这是近年来编程语言领域中的热点话题之一,尤其在 Python 中,它作为一种全新的编程模型,已经成为处理 IO密集型 任务的强力工具。尽管很多人对异步编程望而却步࿰…...

八大排序——简单选择排序
目录 1.1基本操作: 1.2动态图: 1.3代码: 代码解释 1. main 方法 2. selectSort 方法 示例运行过程 初始数组 每轮排序后的数组 最终排序结果 代码总结 1.1基本操作: 选择排序(select sorting)也…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...