第六章 共享模型之 无锁
JUC并发编程系列文章
http://t.csdn.cn/UgzQi
文章目录
- JUC并发编程系列文章
- 前言
- 一、问题的引出
- 如何保证取款方法的线程安全
- 解决方案一、使用synchronized锁住临界区代码
- 解决方案二、无锁(AtomicInteger 原子整数类)
- 二、CAS 与 volatile
- AtomicInteger . compareAndSet( ) 方法的工作方式
- 为什么 CAS 无锁效率更高
- CAS的特点
- 三、原子整数
- 以 AtomicInteger 为粒
- 四、原子引用 P169
- ABA 问题及解决
- AtomicStampedReference(维护版本号)
- AtomicMarkableReference(仅维护是否修改过)
- 五、原子数组
- 六、字段更新器
- 七、原子累加器
- 1、累加器性能比较
- 2、LongAdder源码🔞
- 3、Cell原理之伪共享
- 4、LongAdder. add( )源码
- 5、longAccumulate源码
- 6、sum源码
- 八、(底层类)Unsafe
- 通过反射获取Unsafe对象
- Unsafe CAS 操作
- 模拟实现原子整数
- 总结
前言
一、问题的引出
如何保证取款方法的线程安全
如何保证取款方法的线程安全
有如下需求,保证 account.withdraw 取款方法的线程安全
import java.util.ArrayList;
import java.util.List;public class testThread19 {public static void main(String[] args) {Account account = new AccountUnsafe(10000);Account.demo(account);/*** 输出* 390 cost: 104 ms 应该输出 0,所以是线程不安全的*/}
}class AccountUnsafe implements Account {private Integer balance;public AccountUnsafe(Integer balance) {this.balance = balance;}@Overridepublic Integer getBalance() {return balance;}@Overridepublic void withdraw(Integer amount) {balance -= amount;}
}interface Account {// 获取余额Integer getBalance();// 取款void withdraw(Integer amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(Account account) {List<Thread> ts = new ArrayList<>();long start = System.nanoTime();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(10);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(account.getBalance()+ " cost: " + (end-start)/1000_000 + " ms");}
}
解决方案一、使用synchronized锁住临界区代码
解决方案二、无锁(AtomicInteger 原子整数类)
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;public class testThread19 {public static void main(String[] args) {Account account = new AccountSafe(10000);Account.demo(account);/*** 输出* 0 cost: 97 ms 线程安全*/}
}/*** AtomicInteger 原子整数 解决方案*/
class AccountSafe implements Account {private AtomicInteger balance; //原子整数public AccountSafe(Integer balance) {this.balance = new AtomicInteger(balance);}@Overridepublic Integer getBalance() {return balance.get();}@Overridepublic void withdraw(Integer amount) {while (true) {int prev = balance.get();int next = prev - amount;if (balance.compareAndSet(prev, next)) {break;}}// 可以简化为下面的方法// balance.addAndGet(-1 * amount);}
}/*** synchronized 解决方案*/
class AccountUnsafe implements Account {// Integer 整数private Integer balance;public AccountUnsafe(Integer balance) {this.balance = balance;}@Overridepublic synchronized Integer getBalance() {return balance;}@Overridepublic synchronized void withdraw(Integer amount) {balance -= amount;}
}interface Account {// 获取余额Integer getBalance();// 取款void withdraw(Integer amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(Account account) {List<Thread> ts = new ArrayList<>();long start = System.nanoTime();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(10);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(account.getBalance()+ " cost: " + (end-start)/1000_000 + " ms");}
}
二、CAS 与 volatile
AtomicInteger . compareAndSet( ) 方法的工作方式
为什么 CAS 无锁效率更高
CAS的特点
三、原子整数
以 AtomicInteger 为粒
AtomicInteger i = new AtomicInteger(0);// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的
// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 final
System.out.println(i.getAndAccumulate(10, (p, x) -> p + x));// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));
四、原子引用 P169
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicReference;public class testThread20 {public static void main(String[] args) {DecimalAccount account = new DecimalAccountSafeCas(new BigDecimal("10000"));DecimalAccount.demo(account);}
}class DecimalAccountSafeCas implements DecimalAccount {//原子引用类AtomicReference<BigDecimal> ref;public DecimalAccountSafeCas(BigDecimal balance) {ref = new AtomicReference<>(balance);}@Overridepublic BigDecimal getBalance() {return ref.get();}@Overridepublic void withdraw(BigDecimal amount) {while (true) {BigDecimal prev = ref.get();BigDecimal next = prev.subtract(amount);if (ref.compareAndSet(prev, next)) {break;}}}}interface DecimalAccount {// 获取余额BigDecimal getBalance();// 取款void withdraw(BigDecimal amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(DecimalAccount account) {List<Thread> ts = new ArrayList<>();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(BigDecimal.TEN);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});System.out.println(account.getBalance());}}
ABA 问题及解决
static AtomicReference<String> ref = new AtomicReference<>("A");public static void main(String[] args) throws InterruptedException {log.debug("main start...");// 获取值 A// 这个共享变量被它线程修改过?String prev = ref.get();other();sleep(1);// 尝试改为 Clog.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}private static void other() {new Thread(() -> {log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B"));}, "t1").start();sleep(0.5);new Thread(() -> {log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));}, "t2").start();}输出11:29:52.325 c.Test36 [main] - main start...
11:29:52.379 c.Test36 [t1] - change A->B true
11:29:52.879 c.Test36 [t2] - change B->A true
11:29:53.880 c.Test36 [main] - change A->C true
主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,如果主线程希望: 只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号
AtomicStampedReference(维护版本号)
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);public static void main(String[] args) throws InterruptedException {log.debug("main start...");// 获取值 AString prev = ref.getReference();// 获取版本号int stamp = ref.getStamp();log.debug("版本 {}", stamp);// 如果中间有其它线程干扰,发生了 ABA 现象other();sleep(1);// 尝试改为 Clog.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}private static void other() {new Thread(() -> {log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", ref.getStamp(), ref.getStamp() + 1));log.debug("更新版本为 {}", ref.getStamp());}, "t1").start();sleep(0.5);new Thread(() -> {log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", ref.getStamp(), ref.getStamp() + 1));log.debug("更新版本为 {}", ref.getStamp());}, "t2").start();
}输出15:41:34.891 c.Test36 [main] - main start...
15:41:34.894 c.Test36 [main] - 版本 0
15:41:34.956 c.Test36 [t1] - change A->B true
15:41:34.956 c.Test36 [t1] - 更新版本为 1
15:41:35.457 c.Test36 [t2] - change B->A true
15:41:35.457 c.Test36 [t2] - 更新版本为 2
15:41:36.457 c.Test36 [main] - change A->C false
AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如:
A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。
AtomicMarkableReference(仅维护是否修改过)
但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.atomic.AtomicMarkableReference;@Slf4j(topic = "c.testTread21")
public class testTread21 {public static void main(String[] args) throws InterruptedException {GarbageBag bag = new GarbageBag("装满了垃圾");// 参数2 mark 可以看作一个标记,表示垃圾袋满了AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);log.debug("主线程 start...");GarbageBag prev = ref.getReference();log.debug(prev.toString());new Thread(() -> {log.debug("打扫卫生的线程 start...");bag.setDesc("空垃圾袋");while (!ref.compareAndSet(bag, bag, true, false)) {}log.debug(bag.toString());}).start();Thread.sleep(1000);log.debug("主线程想换一只新垃圾袋?");boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false);log.debug("换了么?" + success);log.debug(ref.getReference().toString());}
}class GarbageBag {String desc;public GarbageBag(String desc) {this.desc = desc;}public void setDesc(String desc) {this.desc = desc;}@Overridepublic String toString() {return super.toString() + " " + desc;}}
输出
14:27:38 [main] c.testTread21 - 主线程 start...
14:27:38 [main] c.testTread21 - GarbageBag@6fdb1f78 装满了垃圾
14:27:38 [Thread-0] c.testTread21 - 打扫卫生的线程 start...
14:27:38 [Thread-0] c.testTread21 - GarbageBag@6fdb1f78 空垃圾袋
14:27:39 [main] c.testTread21 - 主线程想换一只新垃圾袋?
14:27:39 [main] c.testTread21 - 换了么?false
14:27:39 [main] c.testTread21 - GarbageBag@6fdb1f78 空垃圾袋
五、原子数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicIntegerArray;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;public class testThread22 {public static void main(String[] args) {//不安全的数组输出//[8013, 7989, 7991, 7994, 7987, 8016, 8024, 7977, 8019, 8001]demo(()->new int[10],(array)->array.length,(array, index) -> array[index]++,array-> System.out.println(Arrays.toString(array)));//原子数组输出//[10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]demo(()-> new AtomicIntegerArray(10),(array) -> array.length(),(array, index) -> array.getAndIncrement(index),array -> System.out.println(array));}/**参数1,提供数组、可以是线程不安全数组或线程安全数组参数2,获取数组长度的方法参数3,自增方法,回传 array, index参数4,打印数组的方法*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->private static <T> void demo(Supplier<T> arraySupplier,Function<T, Integer> lengthFun,BiConsumer<T, Integer> putConsumer,Consumer<T> printConsumer ) {List<Thread> ts = new ArrayList<>();T array = arraySupplier.get();int length = lengthFun.apply(array);for (int i = 0; i < length; i++) {// 每个线程对数组作 10000 次操作ts.add(new Thread(() -> {for (int j = 0; j < 10000; j++) {putConsumer.accept(array, j%length);}}));}ts.forEach(t -> t.start()); // 启动所有线程ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}}); // 等所有线程结束printConsumer.accept(array);}
}
六、字段更新器
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,
否则会出现异常 Exception in thread “main” java.lang.IllegalArgumentException: Must be volatile type
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;public class testThread23 {public static void main(String[] args) {Student student = new Student();AtomicReferenceFieldUpdater fieldUpdater =AtomicReferenceFieldUpdater.newUpdater(Student.class,String.class,"name");boolean b = fieldUpdater.compareAndSet(student, null, "李四");System.out.println(b);System.out.println(student);/*** 输出* true* Student{name='李四'}*/}
}class Student{volatile String name;@Overridepublic String toString() {return "Student{" +"name='" + name + '\'' +'}';}
}
七、原子累加器
1、累加器性能比较
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
import java.util.concurrent.atomic.LongAdder;
import java.util.function.Consumer;
import java.util.function.Supplier;/**输出* LongAdder 都以及到 两位数了,AtomicLong还是三位数*LongAdder----------开始20000000 cost:8720000000 cost:2720000000 cost:2620000000 cost:2920000000 cost:37LongAdder----------结束20000000 cost:47420000000 cost:56220000000 cost:43220000000 cost:54320000000 cost:446*/
public class testThread23 {public static void main(String[] args) {System.out.println("LongAdder----------开始");for (int i = 0; i < 5; i++) {demo(() -> new LongAdder(), adder -> adder.increment());}System.out.println("LongAdder----------结束");for (int i = 0; i < 5; i++) {demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());}}private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {T adder = adderSupplier.get();long start = System.nanoTime();List<Thread> ts = new ArrayList<>();// 4 个线程,每人累加 50 万for (int i = 0; i < 40; i++) {ts.add(new Thread(() -> {for (int j = 0; j < 500000; j++) {action.accept(adder);}}));}ts.forEach(t -> t.start());ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(adder + " cost:" + (end - start)/1000_000);}
}
性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]... 最后将结果汇总。 这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。cell会监视线程之间的竞争,从最开始的两个累加单元到最大为cpu的核心数。而AtomicLong这种不是特定的原子类的累加单元是一个光杆司令遇到false循环重试,自然也就没有 LongAdder 的效率高。
2、LongAdder源码🔞
(cellsBusy作为)cas 锁(实现示例):在 cells 创建或扩容时, 置为 1, 表示加锁,
cas 锁,当对线程进来对 cells数组进行创建或者扩容时,只能让一个线程进来构建这个数组,如果多个线程都来创建这个数组就乱套了,这时就需要加上 cas 锁,原本的标记为 0,第一个线程 拿着 0 和原来 的 0 比较,为 true 修改标记为 1,这时其他线程再拿着 0 过来和 标记 1 ,对比就不成立了,只能进行等待。
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.atomic.AtomicInteger;// 不要用于实践!!!
@Slf4j(topic = "c.LockCas")
public class LockCas {private AtomicInteger state = new AtomicInteger(0);public void lock() {while (true) {if (state.compareAndSet(0, 1)) {break;}}}public void unlock() {log.debug("unlock...");state.set(0);}public static void main(String[] args) {LockCas lock = new LockCas();new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}} finally {lock.unlock();}}).start();new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");} finally {lock.unlock();}}).start();}
}输出
17:37:14 [Thread-0] c.LockCas - begin...
17:37:14 [Thread-1] c.LockCas - begin...
17:37:14 [Thread-0] c.LockCas - lock...
17:37:15 [Thread-0] c.LockCas - unlock...
17:37:15 [Thread-1] c.LockCas - lock...
17:37:15 [Thread-1] c.LockCas - unlock...
3、Cell原理之伪共享
4、LongAdder. add( )源码
public void add(long x) {// as 为累加单元数组// b 为基础值// x 为累加值Cell[] as; long b, v; int m; Cell a;// 进入 if 的两个条件// 1. as 有值, 表示已经发生过竞争, 进入 if// 2. cas 给 base 累加时失败了, 表示 base 发生了竞争, 进入 ifif ((as = cells) != null || !casBase(b = base, b + x)) {// uncontended 表示 cell 没有竞争boolean uncontended = true;if (// as 还没有创建as == null || (m = as.length - 1) < 0 ||// 当前线程对应的 cell 还没有(a = as[getProbe() & m]) == null ||// cas 给当前线程的 cell 累加失败 uncontended=false ( a 为当前线程的 cell )!(uncontended = a.cas(v = a.value, v + x))) {// 进入 cell 数组创建、cell 创建的流程longAccumulate(x, null, uncontended);}}
}
add 流程图
5、longAccumulate源码
final void longAccumulate(long x, LongBinaryOperator fn,boolean wasUncontended) {int h;// 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cellif ((h = getProbe()) == 0) {// 初始化 probeThreadLocalRandom.current();// h 对应新的 probe 值, 用来对应 cellh = getProbe();wasUncontended = true;}// collide 为 true 表示需要扩容boolean collide = false; for (;;) {Cell[] as; Cell a; int n; long v;// 已经有了 cellsif ((as = cells) != null && (n = as.length) > 0) {// 还没有 cellif ((a = as[(n - 1) & h]) == null) {// 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x// 成功则 break, 否则继续 continue 循环}// 有竞争, 改变线程对应的 cell 来重试 caselse if (!wasUncontended)wasUncontended = true;// cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 nullelse if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;// 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 caselse if (n >= NCPU || cells != as)collide = false;// 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了else if (!collide)collide = true;// 加锁else if (cellsBusy == 0 && casCellsBusy()) {// 加锁成功, 扩容continue;}// 改变线程对应的 cellh = advanceProbe(h);}// 还没有 cells, 尝试给 cellsBusy 加锁else if (cellsBusy == 0 && cells == as && casCellsBusy()) {// 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell// 成功则 break;}// 上两种情况失败, 尝试给 base 累加else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;}
}
longAccumulate 流程图
每个线程刚进入 longAccumulate 时,会尝试对应一个 cell 对象(找到一个坑位)
6、sum源码
获取最终结果通过 sum 方法
public long sum() {Cell[] as = cells; Cell a;long sum = base;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;
}
八、(底层类)Unsafe
取名Unsafe并不是说该类不安全,而是因为该类直接操作内存,比较复杂,意在告诉程序员使用该类有较大风险
概述
Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得
通过反射获取Unsafe对象
Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得
public class UnsafeAccessor {static Unsafe unsafe;static {try { Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}
}
创建 Unsafe对象的工具类
import sun.misc.Unsafe;import java.lang.reflect.Field;public class UnsafeAccessor {private static final Unsafe unsafe;static {try {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {//这里必须 throw 出去throw new Error(e);}}private static Unsafe getUnsafe(){return unsafe;}
}
Unsafe CAS 操作
import lombok.Data;
import sun.misc.Unsafe;import java.lang.reflect.Field;public class TestUnsafeCAS {public static void main(String[] args) throws NoSuchFieldException, IllegalAccessException {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);Unsafe unsafe = (Unsafe) theUnsafe.get(null);
// Unsafe unsafe = UnsafeAccessor.getUnsafe();System.out.println(unsafe);// 1. 获取域的偏移地址long idOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("id"));long nameOffset = unsafe.objectFieldOffset(Teacher.class.getDeclaredField("name"));Teacher t = new Teacher();System.out.println(t);// 2. 执行 cas 操作unsafe.compareAndSwapInt(t, idOffset, 0, 1);unsafe.compareAndSwapObject(t, nameOffset, null, "张三");// 3. 验证System.out.println(t);}
}@Data
class Teacher {volatile int id;volatile String name;
}输出sun.misc.Unsafe@45ee12a7
Teacher(id=0, name=null)
Teacher(id=1, name=张三)
模拟实现原子整数
使用自定义的 AtomicData 实现之前线程安全的原子整数 Account 实现
import sun.misc.Unsafe;public class testThread24 {public static void main(String[] args) {Account.demo(new Account() {AtomicData atomicData = new AtomicData(10000);@Overridepublic Integer getBalance() {return atomicData.getData();}@Overridepublic void withdraw(Integer amount) {atomicData.decrease(amount);}});}
}class AtomicData {private volatile int data;static final Unsafe unsafe;static final long DATA_OFFSET;static {unsafe = UnsafeAccessor.getUnsafe();try {// data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data"));} catch (NoSuchFieldException e) {throw new Error(e);}}public AtomicData(int data) {this.data = data;}public void decrease(int amount) {int oldValue;while(true) {// 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解oldValue = data;// cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 falseif (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) {return;}}}public int getData() {return data;}
}
上面的代码引用到了下面的类
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;public class testThread19 {public static void main(String[] args) {Account account = new AccountSafe(10000);Account.demo(account);/*** 输出* 0 cost: 97 ms 线程安全*/}
}/*** AtomicInteger 原子整数 解决方案*/
class AccountSafe implements Account {private AtomicInteger balance; //原子整数public AccountSafe(Integer balance) {this.balance = new AtomicInteger(balance);}@Overridepublic Integer getBalance() {return balance.get();}@Overridepublic void withdraw(Integer amount) {while (true) {int prev = balance.get();int next = prev - amount;if (balance.compareAndSet(prev, next)) {break;}}// 可以简化为下面的方法// balance.addAndGet(-1 * amount);}
}/*** synchronized 解决方案*/
class AccountUnsafe implements Account {// Integer 整数private Integer balance;public AccountUnsafe(Integer balance) {this.balance = balance;}@Overridepublic synchronized Integer getBalance() {return balance;}@Overridepublic synchronized void withdraw(Integer amount) {balance -= amount;}
}interface Account {// 获取余额Integer getBalance();// 取款void withdraw(Integer amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(Account account) {List<Thread> ts = new ArrayList<>();long start = System.nanoTime();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(10);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(account.getBalance()+ " cost: " + (end-start)/1000_000 + " ms");}
}
总结
相关文章:

第六章 共享模型之 无锁
JUC并发编程系列文章 http://t.csdn.cn/UgzQi 文章目录JUC并发编程系列文章前言一、问题的引出如何保证取款方法的线程安全解决方案一、使用synchronized锁住临界区代码解决方案二、无锁(AtomicInteger 原子整数类)二、CAS 与 volatileAtomicInteger . compareAndSet( ) 方法的…...

2023Q2押题,华为OD机试用Python实现 -【机智的外卖员】
最近更新的博客 华为 od 2023 | 什么是华为 od,od 薪资待遇,od 机试题清单华为 OD 机试真题大全,用 Python 解华为机试题 | 机试宝典【华为 OD 机试】全流程解析+经验分享,题型分享,防作弊指南华为 od 机试,独家整理 已参加机试人员的实战技巧本篇题解:机智的外卖员 题目…...

【华为OD机试真题】密室逃生游戏(javapython)
密室逃生游戏 题目 小强增在参加《密室逃生》游戏,当前关卡要求找到符合给定 密码 K(升序的不重复小写字母组 成) 的箱子, 并给出箱子编号,箱子编号为 1~N 。 每个箱子中都有一个 字符串 s ,字符串由大写字母、小写字母、数字、标点符号、空格组成, 需要在这些字符串中…...

[golang gin框架] 17.Gin 商城项目-商品分类模块, 商品类型模块,商品类型属性模块功能操作
一.商品分类的增、删、改、查,以及商品分类的自关联1.界面展示以及操作说明列表商品分类列表展示说明:(1).增加商品分类按钮(2).商品分类,以及子分类相关数据列表展示(3).排序,状态,修改,删除操作处理 新增编辑删除修改状态,排序2.创建商品分类模型在controllers/admin下创建Go…...

Redis安装-使用包管理安装Redis
这种在Linux上使用apt-get包管理器安装Redis的方式称为“包管理安装”。这种安装方式使用操作系统的官方软件库来获取和安装软件包,可以自动处理软件包的依赖关系,并确保软件包与系统其他部分兼容。这是一种安全、可靠且方便的安装方式,适用于…...

HTML属性的概念和使用
通过前面的学习,我们已经对 HTML标签 有了简单的认识,知道可以在标签中可以添加一些属性,这些属性包含了标签的额外信息,例如: href 属性可以为 <a> 标签提供链接地址;src 属性可以为 <img> 标…...

ChatGPT基础知识系列之一文说透ChatGPT
ChatGPT基础知识系列之一文说透ChatGPT OpenAI近期发布聊天机器人模型ChatGPT,迅速出圈全网。它以对话方式进行交互。以更贴近人的对话方式与使用者互动,可以回答问题、承认错误、挑战不正确的前提、拒绝不适当的请求。高质量的回答、上瘾式的交互体验,圈内外都纷纷惊呼。 …...

‘go install‘ requires a version when current directory is not in a module
背景 安装好环境之后,跑个helloworld看看 目录结构 workspacepathsrchellohelloworld.go代码: package mainimport "fmt"func main() { fmt.Println("Hello World") }1.使用 go run 命令 - 在命令提示符旁,输入 go …...

蓝桥杯嵌入式第十三届(第二套客观题)
文章目录 前言一、题目1二、题目2三、题目3四、题目4五、题目5六、题目6七、题目7八、题目8九、题目9十、题目10总结前言 本篇文章继续讲解客观题。 一、题目1 这个其实属于送分题,了解嵌入式或者以后想要入行嵌入式的同学应该都对嵌入式特点有所了解。 A. 采用专用微控制…...

FFmpeg进阶:各种输入输出设备
文章目录查看设备列表输入设备介绍输出设备介绍查看设备列表 我们可以通过ffmpeg自带的工具查看系统支持的设备列表信息, 对应的指令如下所示: ffmpeg -devices输入设备介绍 通过配置ffmpeg的输入设备,我们可以访问系统中的某个多媒体设备的数据。下面详细介绍一下各个系统中…...

使用Shell笔记总结
一、变量 1、定义变量不加$符号,使用变量要用$;等号两边不能直接接空格符;通常大写字符为系统默认变量,自行设定变量可以使用小写字符。 2、双引号内的特殊字符如 $ 等,可以保有其符号代表的特性,即可以有…...

反常积分的审敛法
目录 无穷先的反常积分的审敛法 定理1:比较判别法 例题: 比较判别法的极限形式: 例题: 定理3:绝对收敛准则 例题: 无界函数的反常积分收敛法 例题: 无穷先的反常积分的审敛法 定理1&#x…...

python实战应用讲解-【numpy专题篇】numpy常见函数使用示例(十三)(附python示例代码)
目录 Python numpy.ma.mask_or()函数 Python numpy.ma.notmasked_contiguous函数 Python numpy.ma.notmasked_edges()函数 Python numpy.ma.where()函数 Python Numpy MaskedArray.all()函数 Python Numpy MaskedArray.anom()函数 Python Numpy MaskedArray.any()函数 …...

Java设计模式(十九)—— 桥接模式
桥接模式定义如下:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 适合桥接模式的情景如下: 不希望抽象和某些重要的实现代码是绑定关系,可运行时动态决定抽象和实现者都可以继承的方式独立的扩充,程序在运行…...

多线程并发安全问题
文章目录并发安全问题线程安全性死锁定义实现一个死锁查看死锁解决死锁其他线程安全问题单例模式并发安全问题 线程安全性 线程安全是指我们所写的代码在并发情况下使用时,总是能表现出正确的行为;反之,未实现线程安全的代码,表…...

P1005 [NOIP2007 提高组] 矩阵取数游戏
题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 ��nm 的矩阵,矩阵中的每个元素 ��,�ai,j 均为非负整数。游戏规则如下: 每次取数时须从每行各取走一个元素ÿ…...

百度云【人脸识别】
目录 1:百度云【人脸识别云服务】 2:Java-SDK文档 3:项目中测试 1:百度云【人脸识别云服务】 人脸识别云服务 包含实名认证、人脸对比、人脸搜索、活体检测等能力。灵活应用于金融、泛安防等行业场景,满足身份核验…...

强化模板模块
一、非类型模板参数 模板参数分为 类型模板参数(C模板的零基础讲解)和非类型模板参数。 看下面的代码 #define N 10 //T就是类型模板参数 template<class T> class Array { private:T a[N]; }; int main() {Array<int> a1;Array<double> a2;return 0; }上面…...

Vue.js学习详细课程系列--共32节(6 / 6)
Vue.js学习课程(6 / 6)29. 组件:参数验证知识点组件的数据综合例30. 组件:事件传递知识点v-on$emit综合例31. 组件:slot插槽知识点slot综合例32. 组件:组合slot知识点slot命名综合例29. 组件:参…...

【TFT屏幕】1.44寸彩屏
文章目录一.硬件层——引脚配置的移植二.应用层——显示函数的移植1. 移植显示一个字符函数2. 移植显示数字函数3.叠加方式选择一.硬件层——引脚配置的移植 宏定义的方式,直接修改引脚,实测可直接更改,非常方便移植 /*******************…...

vue3组合式api
文章目录组合式API介绍什么是组合式 API?为什么要有组合式 API?更好的逻辑复用更灵活的代码组织Option ApiOption Api的缺陷Composition Api更好的类型推导更小的生产包体积与选项式 API 的关系取舍组合式 API 是否覆盖了所有场景?可以同时使…...

Maven高级-私服
Maven高级-私服6,私服6.1 私服简介6.2 私服安装步骤1:下载解压步骤2:启动Nexus步骤3:浏览器访问步骤4:首次登录重置密码6.3 私服仓库分类6.4 本地仓库访问私服配置步骤1:私服上配置仓库步骤2:配置本地Maven对私服的访问权限步骤3:配置私服的访问路径6.5 私服资源上传…...

网络优化小结
网络基础知识 OSI七层网络架构 OSI简称Open System Intercnnect,开放式系统互联,是一个国际互联网标准制定的一个组织 应用层 实际应用场景,比如 浏览器、文件传输、电子邮件、文件服务、虚拟终端等; http、FTP、ssh等 表示层…...

Android 11.0 原生SystemUI下拉通知栏UI背景设置为圆角背景的定制(一)
1.前言 在11.0的系统rom定制化开发中,在原生系统中关于SystemUI下拉状态栏的通知栏的每条通知的背景是白色的四角的背景, 由于在产品设计中,需要把四角背景默认改成白色的圆角背景,所以就需要分析系统原生下拉通知栏的每条通知的默认背景, 这就需要了解11.0的systemui的通…...

个人练习-Leetcode-1942. The Number of the Smallest Unoccupied Chair
题目链接:https://leetcode.cn/problems/the-number-of-the-smallest-unoccupied-chair/ 题目大意:给出一群人到达一个排队的时间和离开派对的时间[arr, lev]。有无数个座位,下标从0开始。当一个人在tm时刻离开时,如果一个人在tm…...

EMC经典问答85问(59-62问)
59、用双向可控硅控制直流电机的调速,但电机会干扰电源影响过零检则,造成不受控或速度妀变。请各位指教! 答 1: 出现这中现象的可能性有:1、电机属于非阻性负载,所以电路中产生相位移动,导致控制不准&#…...

Java面向对象 - 封装、继承和多态的综合练习(答案+知识点总结)第1关:封装、继承和多态进阶(一)+ 第2关:封装、继承和多态进阶(二)
目录 第1关:封装、继承和多态进阶(一) 报错总结 & 注意事项: 第2关:封装、继承和多态进阶(二) 源码: 报错总结 & 注意事项: 思维导图免费制作网站…...

小迪安全day20WEB漏洞-文件上传之基础及过滤方式
小迪安全day20WEB漏洞-文件上传之基础及过滤方式 什么是文件上传漏洞 有文件上传就可以测试是否有漏洞,关键看代码是否完备。 服务端代码未对客户端上传的文件进行严格的验证和过滤 漏洞危害 自定义网站后门,获取网站权限,属于高危漏洞。 上…...

LeetCode236.最近的公共祖先
求解最近公共祖先的算法 分为两个步骤: 求出两节点路径取两路径上最后一个相同的节点(该节点即为p,q节点的最近公共祖先) 节点路径的算法设计与实现 求节点路径即输入二叉树根节点与待求节点返回根节点到该节点路径上的所有节…...

【springcloud 微服务】Spring Cloud Alibaba整合Sentinel详解
目录 一、前言 二、环境准备 2.1 部署sentinel管控台 2.1.1 官网下载sentinel的jar包 2.1.2 启动控制台 2.1.3 访问控制台 2.2 整合springcloud-alibaba 2.2.1 引入相关依赖 2.2.2 修改配置文件 2.2.3 增加一个测试接口 2.2.4 接口测试 三、sentinel 流控规则使用 …...