当前位置: 首页 > news >正文

kettle开发-Day37-SQ索引优化

前言:

在上一个生产项目中,有个单表数据超249G了,里面存储的数据时间跨度就1年左右,那为啥会出现这种情况呢?数据来源为,一个生产基地所有电表的每分钟读数,一个基地大概500个电表左右,然后乘以1天24小时,一天1440分钟,一年365天,所以就出现了前面说的单表超249G的情况。真的是单表顶10库。因业务部门想看到每个时间点的电耗来安排排产,虽然当时满足了业务需求,但随着时间的推移对应数据量是越来越大,前端查询和后端数据抽取的耗时越来越大,因此怎么让如果大表实现快速的数据分析和数据处理呢?更换非关系型数据库?分表分库?

十二亿七千六百零四万三千五百三十五数据量

一、亿级数据处理

如上图所示,目前数据量已经是13亿左右,因此此时我们进行数据删除、更新、排序、分组等耗时会比较长。但我们看电耗都是默认看最新的读数,因此我们必然需要用到排序操作,因此怎么在0.1s内完成亿级的数据排序呢?同样的我们知道在kettle做数据抽取时,我们经常更新当日数据时,会进行先delete后insert的操作,如我们更新2023年2月13日16点的数据,我们需先删除2023年2月13日0点至16点的当天数据,再插入2023年2月13日的数据。(这是网上经典的kettle数据处理方案)。但是实际情况下,我们删除带条件的亿级数据时耗时最小在10分钟以上。再包括插入数据的时间,我们至少要10分钟才能完成一个表的数据处理,这在实际应用情况下,是必然不能接受的,因为业务需要看到1分钟的数据变化,因此我们需要将作业执行的耗时控制在1分钟之内,并且在前端数据分析展现速度控制在3秒以内,因为用户的耐心阀值为3秒。

二、方案与效果对比

下面我们分析最常用的三种kettle数据处理方案,并进行方案对比。

方案

效果分析

应用场景

插入更新

无删除、不影响前端展现、耗时长

需有标准主键,每次更新数据量在5千行内。

先delete后insert

目标表数据在100万行内,不影响前端展现,效率是插入更新的100倍以上

每次更新数据量在1-10万行内,目标表总数据量在100万行内。

插入变量范围数据

开发相对复杂、基本在2s内可完成作业,只需读取源表数据耗时,插入更新基本无耗时

适合有明确主键的场景,适合任何场景,但需在源表做好规范,源表有对应主键或者联合主键。

2.1原因分析

kettle的工作原理是定时处理数据流,数据是以数据流的形式在kettle作业中执行,数据流耗时主要表现在源表读取耗时、分组、求和等计算耗时、update、delete、insert数据库耗时。插入耗时最短、其次为查询耗时,因采用数据流的形式,当将批量的数据保存至数据流中时,可在零点几秒内完成亿万级数据插入。因此想达到效率最大化,我们在数据处理时只采用插入操作。

2.2案例分析

我们进行数据处理时,需要的不仅仅是速度快,而且需要精准。因此我们怎么避免冗余的数据呢?特别是在亿万级数据时,快速定位需要删除的数据。因此此时我们需要做的是,找出有规律的主键,如时间,如我们源数据库中,数据已更新至2023年2月13日15:56:45时,现在时间是2023年2月13日18:07:32因此从数据分析的角度分析,我们只需更新2023年2月13日15:56:45至2023年2月13日18:07:32的数据即可。因此我们需快速定位至2023年2月13日15:56:45的主键,然后在插入数据时,查询大于2023年2月13日15:56:45主键的数据即可完成我们的目的了。

2.3步骤分解

从上面可知,我们需要做两步操作:

1、第一步是快速找出2023年2月13日15:56:45的主键(读目标表)

2、插入2023年2月13日15:56:45至现在(2023年2月13日18:07:32)的数据

因此我们在读取最新主键时耗时需可知在0.1内,插入数据耗时控制在2s内,这样我们就可以将整个数据处理耗时控制在3秒内,并不影响前端展现,且数据精确。

2.4实现思路

从前面可知,我们一直在强调快速和定位,因此此时让我们想到了数据库一个常用功能就是索引。因为索引就是为了快速和定位而生。因此我们只需要在我们查询和过滤的字段上加上索引,我们就可以在0.1s内完成数据的快速定位。

为了方便大家的理解,我在上面的13亿数据表中,增加了年月日的字段索引,看我们查找出最大的年月日需要多少耗时,对应增加索引的语句为,create index seq_name on table (column_name)。如增加BI.SY_NY_NO1表索引语句为create index seq_SY_NY_NO1 on BI.SY_NY_NO1(年月日)。

如上图所示我们查询出最新的年月日只需用了0.052秒,稳稳控制在0.1s内,如果我没告诉你它数据量在13亿,你肯定觉得它数据量在1万以内,这就是索引带来的改变。

同样我们在0.1秒左右完成了最新数据的过滤,这就是索引带来的改变,当然为了区分效果我们使用另外一个不带索引的字段来过滤看下效果。如下图所示使用了10分36秒才过滤出我们需要的数据。对应效率提高(10x60+36)/0.129=3069倍。

三、实际应用

从上面我们了解到,索引可以快速提高查询效率,因此我们在数据分析、数据抽取的时候怎么灵活应用索引呢?

3.1数据分析应用

如我们在做生产的批次追溯时,我们需要查看整个过程任何时间段的批次的数据追溯,从前端展现来看,对应涉及的字段较多,涉及的展现逻辑较复杂,那我们怎么在最短的时间(3S)内完成数据分析呢?因此我们在前端的控件加载耗时控制在1秒内,因对应的生产批次需根据前面的基地、车间、日期、型号进行过滤,因此我们需增加基地、车间、日期、型号的索引,对应展示的明细表需根据基地、车间、日期、型号、批次进行过滤,因此此时我们需增加基地、车间、日期、型号、批次的索引。。不难发现我们为了完成这个需求,我们需要增加很多索引组,这就是为什么前面那个亿万级表通过年月日查询很快,但通过另外一个字段查询就大打折扣的原因,因此,此时我们需根据需求进行联合索引的创建来大大提高展现效率。如下图所示在表中增加了三组索引,这样在前端展现就能在3s内完成任一时间的数据分析了。

3.2数据抽取应用

基本思路在前面已经阐述,对应获取最新主键,然后插入过滤对应主键即可。

对应作业为下图所示,通过变量过滤,再执行数据插入即可。

相关文章:

kettle开发-Day37-SQ索引优化

前言:在上一个生产项目中,有个单表数据超249G了,里面存储的数据时间跨度就1年左右,那为啥会出现这种情况呢?数据来源为,一个生产基地所有电表的每分钟读数,一个基地大概500个电表左右&#xff0…...

【camera之3a】AE

文章目录sensorAEsensor 分辨率 常见分辨率的感性表述即30万、100万、200万,正确表述应为0.3M、1M、2M,其中M代表百万,是像素单位。sensor分辨率即指在单位面积上,像素的个数,数值越大 ,则代表像素点越多&…...

Docker-Consul概述以及集群环境搭建

一、Docker consul概述容器服务更新与发现:先发现再更新,发现的是后端节点上容器的变化(registrator),更新的是nginx配置文件(agent)egistrator:是consul安插在docker容器里的眼线&a…...

性能技术分享|Jmeter+InfluxDB+Grafana搭建性能平台(四)

四、Jmeter配置InfluxDB4.1 后端监听器(BackendListener)介绍1、什么是后端监听器(BackendListener)?源码给出的解释是:BackendListener是一种异步监听并获取到测试结果的实现类。也就是说发出的如http等响应请求的结果,都会被封装在SampleRe…...

图数据建模基础

Neo4j 图的组件 节点(Nodes)标签(Labels)关系(Relationships)属性(Properties)建模过程 了解领域并为应用程序定义特定用例(问题)。开发初始图形数据模型。 对…...

nodejs篇 process模块

目录 前言 监听回调 beforeExit 、exit、uncaughtException beforeExit exit uncaughtException Process常用属性 stdout stdin process方法 process.cwd(),process.chdir() process.nextTick() process.exit() process.kill() 前言 process是nodejs提…...

JavaScript高级程序设计读书分享之3章——3.4数据类型

JavaScript高级程序设计(第4版)读书分享笔记记录 适用于刚入门前端的同志 ECMAScript 有 6 种简单数据类型(也称为原始类型):Undefined、Null、Boolean、Number、String 和 Symbol(es6新增)。 还有一种复杂数据类型叫…...

棱形打印--进阶2(Java)

棱形打印 问题 * *** ***** ******* ********* ******* ***** *** * * * …...

清除 git 所有历史提交记录,使其为新库

清除 git 所有历史提交记录,使其为新库需求方案需求 基于以前的仓库重新开发,这样可保留以前的配置等文件,但是需要删除全部的历史记录、tag、分支等。 方案 创建新的分支 使用 --orphan 选项,可创建1个干净的分支(无…...

pyTorch下载和cuda下载以及学习笔记

pytorch官方网站,cuda官方网站 CUDA下载:https://developer.nvidia.com/cuda-toolkit-archive CUDNN下载:https://developer.nvidia.com/rdp/cudnn-download pytorch下载:pytorch.org 任务管理器中只显示CUDA占用的专用内存&#…...

【学习总结】IMU预积分推导

本文仅用于记录自己学习总结。记录IMU预积分推导过程,不包含具体原理。 符号表示 RRR: 表示旋转矩阵 vvv: 表示速度 ppp: 表示位移 ExpExpExp: 指数映射,将旋转向量映射为旋转矩阵 w~\widetilde{w}w: 角速度观测值 f~\widetilde{f}f​: 加速度观测值 bg…...

天猫商城自动化python脚本(仅供初学者学习使用)

作者:Eason_LYC 悲观者预言失败,十言九中。 乐观者创造奇迹,一次即可。 一个人的价值,在于他所拥有的。可以不学无术,但不能一无所有! 技术领域:WEB安全、网络攻防 关注WEB安全、网络攻防。我的…...

代码随想录第十一天(459)

文章目录459. 重复的子字符串答案思路暴力破解移动匹配459. 重复的子字符串 也不知道为啥这个提示简单题…… 答案思路 暴力破解 例如:abcabc 移位一次:cabcab 移位两次:bcabca 移位三次:abcabc 现在字符串和原字符串匹配了…...

线程及线程池学习

1 线程和进程的区别?进程:进程指正在运行的程序。线程:线程是进程中的一个执行单元,负责当前进程中程序的执行,一个进程中至少有一个线程。同一个进程中的多个线程之间可以并发的执行。2 创建线程有哪几种方式&#xf…...

SpringBoot整合(四)整合Ehcache、Redis、Memcached、jetcache、j2cache缓存

​ 企业级应用主要作用是信息处理,当需要读取数据时,由于受限于数据库的访问效率,导致整体系统性能偏低。 ​ 为了改善上述现象,开发者通常会在应用程序与数据库之间建立一种临时的数据存储机制,该区域中的数据在内存…...

想要的古风女生头像让你快速get

如今我看到很多人都喜欢用古风女生当作头像,那么今天我就来教大家如何快速得到一张超美的古风女生头像~ 上图就是我使用 APISpace 的 AI作画(图像生成)服务 快速生成的古风女生头像,不仅可以限定颜色,还可以选择『宝石镶嵌』或『花卉造型』这…...

传统企业数字化转型,到底难在哪里?

数字化转型过程中面临最大的挑战和问题是什么?这篇整理了企业在数字化转型过程中普遍面临的9大问题和挑战以及如何解决这些问题,希望能够对各位企业数字化转型有多启发和帮助。 01 企业数字化转型三大现状 在梳理企业数字化转型问题之前,我想…...

Python:青蛙跳杯子(BFS)

题目描述 X 星球的流行宠物是青蛙,一般有两种颜色:白色和黑色。 X 星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去。 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个…...

6.10 谱分解

文章目录计算方法代码实现计算方法 单纯矩阵normal matrix指的是符号ATAAATA^TAAA^TATAAAT的矩阵,他们的特征值互异。此外,单纯矩阵还有个特点,他们的特征空间彼此正交。   对于单纯矩阵,存在以下的谱定理Spectral theorem&…...

MySQL入门篇-MySQL 行转列小结

备注:测试数据库版本为MySQL 8.0 需求:求emp表各个岗位的工资之和,如无,用0代替 如需要scott用户下建表及录入数据语句,可参考:scott建表及录入数据sql脚本 CASE语法 SELECT deptno,ifnull(sum(case when job MANAGER then sal else 0 …...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

docker 部署发现spring.profiles.active 问题

报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

go 里面的指针

指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...