原子的波尔模型、能量量子化、光电效应、光谱实验、量子态、角动量
一. 卢瑟福模型
1908年,卢瑟福用α粒子继续轰击金箔,发现有极少数粒子,发生了非常大的偏移。而这对于当时主流的葡萄干面包模型理论分析是相悖的。
原子可看成由带正电的原子核和围绕核运动的一些电子组成,原子中心的原子核带正且几乎集中了原子的全部能量,带负电的电子进行绕核运动。
二. 能量量子化、光电效应、光谱
2.1、能量量子化的提出
(1)黑体辐射
了解黑体辐射之前需知道什么是热辐射?首先,任何问题都可以不断辐射、吸收和发射电磁波。而辐射出去的电磁波,在各个波段是不同的,也就是存在一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
当然物体吸收辐射后温度的变化不会一直上升,物体的温度不再变化,即物体的辐射和吸收达到平衡,此时物体的热辐射称为平衡热辐射,此时物体的热辐射称为平衡热辐射。
知道黑体辐射的定义,那么就可以进而得到黑体的定义:能够全部吸收一切外来的电磁辐射(各种
波长的辐射)且不反射和透射的物体。比如说煤烟(吸收率约99%)、开有小孔的洞穴。
那么研究黑体有什么优势呢?1859年,基尔霍夫证明平衡态时黑体辐射能量密度随频率变化曲线的形状与位置只依赖于黑体的热力学温度,与构成空腔黑体的材料以及形状无关。这样,我们就可以利用黑体可撇开材料的具体性质来研究热辐射本身的规律。
(2)能量交换的量子化
在2.1说了热辐射的定义即物体加热后所辐射出的电磁波和本身的特性额温度相关,而黑体辐射又与材料和形状无关,黑体的辐射光谱仅取决于黑体所处的温度。不同物理学家对黑体辐射进行分析,提出了位移定理、维恩公式以及普朗克的能量量子化。
1893年,维恩提出了位移定律,即,通过此公式即可确定不同温度下,辐射最强波的波长值,如下图:
1896年,维恩根据实验数据分析,提出了维恩公式:,但是在高频部分与实验结果相符度不是很好,如图:
1900年,德国物理学家普朗克在一次德国物理会议上提出:电子辐射的能量交换只能是量子化的,公式表达为:(其中E为辐射电磁波带电谐振子的能量,v为电磁波的频率,h为普朗克常量
)
重要意义:打破“一切自然过程能量都是连续的”经典看法,敲开量子力学的大门。
2.2、光电效应
1887年,德国物理学家赫兹发现紫光照射金属的尖端特别容易发生尖端放点;
1897年,汤姆逊发现了电子;1900年,林纳实验发现金属在紫外光照射下发射电子。人们意识到一定频率的光照射在金属表面时,金属中的电子吸收光能会从金属表面逸出——光电效应。
(1)光电效应实验
光电效应的实验装置图如下图:
如上图,光经过石英窗照在金属板K上,金属板K逸出电子——光电子。光电子在到达金属板A形成电流——光电流。
金属板A和K之间加以电场V:当(
为电子逸出的最大动能),将没有电子到达金属板A,光电流为0,
为遏制电压。
实验结果:1)存在阈频:对任何金属,都有一个临界频率
,入射光频率v>
时,才能发生光电效应,当v<
时,无论光强多大,无光电子产生。
与材料有关,与光强无关;2)光电子的出射是瞬时的:当v>
时,无论光有多弱,立即有光电子产生(<1ns);3)v>
时,光电流强度i与照射光辐射强度I成正比,光强只影响光电子的数目,不影响光电子能量;4)对于同一种金属材料,入射光频率v一定时,遏制电压不随入射光强改变。光电子能量与照射光的频率有关,与入射光强无关;5)对于特定的金属材料,遏制电压
与入射光的频率成正比——光强只影响光电子的数目,不影响光电子的能量。——光电子能量与光强无关,与光频率有关。
与原理论相悖:经典物理认为光是一种波动,若光为一种波动则当光照射在电子上随着电子聚集能量就可以脱离原子核逸出,且能量的积聚是需要时间的。这与观测到到光频率大于瞬时逸出,且光强不影响遏制电压是相悖的。因此,需要提出新的一种理论以解释光电效应。
(2)爱因斯坦光电方程
光子的提出:1905年,爱因斯坦发展了普朗克的量子说,指出光以粒子的形式-光子存在和传播。一个光子的能量是。因此,光电效应中,电子吸收光子能量,一部分消耗在克服电子逸出功,另一部分变为光电子逸出后的动能。光电效应满足关系式:
上式表明,对于给定的金属(逸出功一定),电子动能T与入射光的频率v成线性关系。直线的斜率就是h,所以对于不同的靶来说,这条斜率是相同的。
爱因斯坦光电方程:(W为逸出功,仅与材料有关)。
特性:1)频率阈值:只有v>才会发生光电效应,
;2)瞬时性:光子到达金属表面,一个光子能量一次性被一个电子吸收,若v>
时,电子立刻逸出,无需时间积累;3)当v>
时,光强越大,光子数越多,单位时间内产生的光电子数目越多,光电流越大。
爱因斯坦因光电效应于1921年获得诺贝尔奖。
2.3、光谱
卢瑟福实验中,α粒子的大角度散射,肯定了原子核的存在但核外电子的分布和运动情况仍然是个迷。
(1)光谱的基本原理及分类
光谱实验基本原理:不同波长的光在介质中的折射率不同,基于此,光经过三棱镜后可以将不同波长的光分离形成一个光谱,构建的光谱既可以把光射线按不同波长分析,又可以纪录不同谱线的强度。
光谱的分类——根据波长的变化情况,光谱大致可以分为三类:
1)连续谱:由连续分布的一切波长的光组成,整个光谱区域都是亮的。一般是由固态的高温辐射,如太阳;
2)带光谱:波长在各区域内连续变化,为分子光谱;
3)线光谱:波长不连续变化(只发某些特定频率的光),为原子光谱。
(2)氢原子光谱
氢原子核外只有一个电子,为研究原子光谱提供了便利条件。
实验现象:氢光谱在可见区和近红外区有很多谱线,为分立的线状光谱,且每一线系内光谱逐渐向线系短波一端靠拢。
1885年,巴尔末从光谱仪中观察到氢原子光谱线共有14条(巴耳末系),并对其进行了分析,提出了一个经验公式(巴尔末公式):。其中B=364.56nm为经验常数,
为波数即波长的倒数。
氢原子除了巴耳末系外,还有很多其它的线系,具有相同的特征(逐渐向短波一端——波数大的一端靠拢)
1889年,里德伯提出了一个更普遍的方程:。其中,
为光谱项,
,
,
为里德伯常量。
氢原子光谱实验规律:1)原子具有线性光谱;2)谱线的波数由两个谱项的差值决定;3)第一个谱项的变量决定不同的谱系,第二个谱项的变量决定同一谱系中的不同谱线。
氢原子光谱实验带来的疑问:复杂的光谱线可由里德伯公式简单的表示,而里德伯公式是凭经验凑出来的,能与实验很好的符合,其根本原因是什么?答案将由波尔的波尔模型揭开。
三、波尔模型
3.1、定态假设
假设内容:电子核绕核做圆周运动,只在分立的轨道运动,虽然在这些轨道运动时具有加速度,但并不向外辐射能量,每一个轨道对应一个定态,而每一个定态都与一个能量相对应。
核式模型+定态的稳定状态:1)电子作绕原子核的圆周运动;2)不向外辐射电磁波;3)定态的能量不稳定。
电子能量和圆周运动频率:
根据定态假设,电子绕核做匀速的圆周运动,若原子核不动,则原子核对电子产生的库仑力为电子提供了圆周运动的向心力,即:
其中,r为电子和原子核的距离,Ze为核电电荷量(Z为正整数,当Z=1时,即为氢原子),v为电子绕核运动的线速度。
电子能量由电子绕核做圆周运动的动能和原子核对其产生的势能(离核电子动能减少,为负的势能)两部分产生:
可得到,电子的能量公式:
需注意:1)电子能量为负值,r趋于无穷时,能量最大为0。半径r越大能量E越大,r越小能量E越低。2)r不连续,导致了能量E的不连续。
通过库仑力为电子提供向心力公式,可计算电子作圆周运动频率:
3.2、跃迁假设
假设内容:电子并不永远处于一个轨道上,它会从一个定态轨道跃迁到另一个定态轨道,以电磁波的形式放出或者吸收能量hv。(当从高能量轨道跃迁至低能量轨道,多余的能量通过光子的形式放出;低能量轨道跃迁至高的轨道,需要从外界吸收能量)
重要意义:将光的量子论引入至原子物理。
公式表达:
定态轨道能量计算:
根据里德伯公式,可以得到氢原子波数为:;
两边同时乘以hc可以得到:
进而得到波尔模型:
电子定态轨道能量为:
即电子从定态n'跃迁至n时会释放能量,放出光子,光子的波长为λ。
电子轨道半径——将上述的电子定态轨道能量和3.1中电子能量公式联立,可以得到电子轨道半径为:
3.3、角动量量子化
假设内容:电子处于定态时,角动量是量子化的。角动量可用公式表示为:
,其中
。
微观世界的量子力学和宏观世界的经典物理是否可在某些情况下结果统一?
在上述理论基础上,我们可以指导可以用不连续的量子化来描述微观世界,无论从能量还是电子的轨道。而在宏观世界,如电场和磁场,我们知道无论轨道还是能量可以连续的变化。带电物体周期性公转运动会发出连续频谱且辐射频率等于公转频率。
原子现象的量子理论在极限情况下应给出与相应经典物理学相同的结果
即量子数很大而改变很小的情况下,量子理论的结果应和经典物理学结果相近,反之亦然。
1)能级连续变化状态:
根据频率条件,当
且n与n'相差很小时,能级为连续变化状态,量子体系的行为将趋于经典体系,经典规律成立;
2)量子辐射频率趋近于经典辐射频率:
当时,
,则可对量子跃迁频率近似为:
经典理论中,带电粒子做周期运动,连续发射的辐射频率=粒子的周期运动频率。结合3.1中电子作圆周运动的频率:
假设量子跃迁频率与圆周运动频率相等,可将上述两式联立获得电子轨道半径:
与3.2电子轨道半径公式联立,可得里伯德常数表达式:
计算可得:
实验获得的里德伯常数为:
理论结果:理论与经验常数相差,万分之五。万分之五的差值也是后期提出波尔模型的实验验证之一。
轨道角动量量子化公式推导:
再将其带入,可以得到
(其中,
)。
再由3.1库仑力提供向心力:,可以得到
由上述和
的表达式,可以计算得到轨道角动量为:
由上式可知,角动量也是量子化的。
相关文章:
原子的波尔模型、能量量子化、光电效应、光谱实验、量子态、角动量
一. 卢瑟福模型 1908年,卢瑟福用α粒子继续轰击金箔,发现有极少数粒子,发生了非常大的偏移。而这对于当时主流的葡萄干面包模型理论分析是相悖的。 原子可看成由带正电的原子核和围绕核运动的一些电子组成,原子中心的原子核带正…...

【如何使用Arduino控制WS2812B可单独寻址的LED】
【如何使用Arduino控制WS2812B可单独寻址的LED】 1. 概述2. WS2812B 发光二极管的工作原理3. Arduino 和 WS2812B LED 示例3.1 例 13.2 例 24. 使用 WS2812B LED 的交互式 LED 咖啡桌4.1 原理图4.2 源代码在本教程中,我们将学习如何使用 Arduino 控制可单独寻址的 RGB LED 或 …...

计算机基本知识扫盲(持续更)
计算机基本知识扫盲Q:硬盘和磁盘有什么区别?A:硬盘和磁盘都是存储数据的设备。磁盘指的是存储数据的圆形或者是方形的光盘,但是硬盘则是指机械式硬盘和固态硬盘。磁盘一般用于存储少量数据,例如软件安装文件、音乐和电…...

学习大数据需要什么语言基础
Python易学,人人都可以掌握,如果零基础入门数据开发行业的小伙伴,可以从Python语言入手。 Python语言简单易懂,适合零基础入门,在编程语言排名上升最快,能完成数据挖掘、机器学习、实时计算在内的各种大数…...

ElasticSearch——详细看看ES集群的启动流程
参考:一起看看ES集群的启动流程 本文主要从流程上介绍整个集群是如何启动的,集群状态如何从Red变成Green,然后分析其他模块的流程。 这里的集群启动过程指集群完全重启时的启动过程,期间要经历选举主节点、主分片、数据恢复等重…...

【教学类-30-01】5以内加法题不重复(一页两份)(包含1以内、2以内、3以内、4以内、5以内加法,抽取最大不重复数量)
作品样式: 背景需求: 虽然学前阶段就对幼儿训练加减法列式题遭到诟病,但是从不少幼儿(特别是二胎)在家中已经开始适应加减法题型了。 结合中班年龄特点,我从5以内的不重复加法题开始实验(雪花…...

写博客8年与人生第一个502万
题记:我们并非生来强大,但依然可以不负青春。 原本想好好写一下如何制定一个目标并通过一点一滴的努力去实现,这三年反思发现其实写自己的经历并不重要。 很多人都听过一句话:榜样的力量是无穷的。 更现实和实际的情况是&#x…...

【华为OD机试真题】日志采集系统(javapython)
日志采集系统 时间限制:1s空间限制:256MB限定语言:不限 题目描述: 日志采集是运维系统的的核心组件。日志是按行生成,每行记做一条,由采集系统分 批上报。 如果上报太频繁,会对服务端造成压力;如果上报太晚,会降低用户的体验;如果一 次上报的条数太多,会导致超时…...

epoll源码剖析
文章目录1.前言2.应用层的体现3.两个重要结构(1)eventpoll(2)epitem4.四个函数(1)epoll_create源码(2)epoll_ctl源码(3)epoll_wait的源码(4)epoll_event_callback()5.水平触发和边缘触发1.状态变化2.LT模式3.ET模式1.前言 好久好久没有更新博客了,最近一直在实习&a…...

Linux驱动开发——高级I/O操作(一)
一个设备除了能通过读写操作来收发数据或返回、保存数据,还应该有很多其他的操作。比如一个串口设备还应该具备波特率获取和设置、帧格式获取和设置的操作;一个LED设备甚至不应该有读写操作,而应该具备点灯和灭灯的操作。硬件设备是如此众多,…...

适配器模式:C++设计模式中的瑞士军刀
适配器模式揭秘:C设计模式中的瑞士军刀引言设计模式的重要性适配器模式简介与应用场景适配器模式在现代软件设计中的地位与价值适配器模式基本概念适配器模式的定义与核心思想类适配器与对象适配器的比较设计原则与适配器模式的关系类适配器实现类适配器模式的UML图…...

【三十天精通Vue 3】 第三天 Vue 3的组件详解
✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 🌟专栏地址: 三十天精通 Vue 3 文章目录引言一、Vue 3 组件的概述1. Vue 3 的组件系统2. Vue 3 组件的特点…...

SqlServer实用系统视图,你了解多少?
SqlServer实用系统视图,你了解多少?前言master..spt_valuessysdatabasessysprocesses一套组合拳sysobjectssys.all_objectssyscolumnssystypessyscommentssysindexes结束语前言 在使用任何数据库软件的时候,该软件都会提供一些可能不是那么公…...

NodeJS Cluster模块基础教程
Cluster简介 默认情况下,Node.js不会利用所有的CPU,即使机器有多个CPU。一旦这个进程崩掉,那么整个 web 服务就崩掉了。 应用部署到多核服务器时,为了充分利用多核 CPU 资源一般启动多个 NodeJS 进程提供服务,这时就…...

[C++笔记]vector
vector vector的说明文档 vector是表示可变大小数组的序列容器(动态顺序表)。就像数组一样,vector也采用连续的存储空间来储存元素。这就意味着可以用下标对vector的元素进行访问,和数组一样高效。与数组不同的是,它的大小可以动态改变——…...

Python 迁移学习实用指南:1~5
原文:Hands-On Transfer Learning with Python 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如…...

【CSS重点知识】属性计算的过程
✍️ 作者简介: 前端新手学习中。 💂 作者主页: 作者主页查看更多前端教学 🎓 专栏分享:css重难点教学 Node.js教学 从头开始学习 ajax学习 标题什么是计算机属性确定声明值层叠冲突继承使用默认值总结什么是计算机属性 CSS属性值的计算…...

Java避免死锁的几个常见方法(有测试代码和分析过程)
目录 Java避免死锁的几个常见方法 死锁产生的条件 上死锁代码 然后 :jstack 14320 >> jstack.text Java避免死锁的几个常见方法 Java避免死锁的几个常见方法 避免一个线程同时获取多个锁。避免一个线程在锁内同时占用多个资源,尽量保证每个锁…...

go binary包
binary包使用与详解 最近在看一个第三方包的库源码,bigcache,发现其中用到了binary 里面的函数,所以准备研究一下。 可以看到binary 包位于encoding/binary,也就是表示这个包的作用是编辑码作用的,看到文档给出的解释…...

CompletableFuture使用详解(IT枫斗者)
CompletableFuture使用详解 简介 概述 CompletableFuture是对Future的扩展和增强。CompletableFuture实现了Future接口,并在此基础上进行了丰富的扩展,完美弥补了Future的局限性,同时CompletableFuture实现了对任务编排的能力。借助这项能力…...

4.15--设计模式之创建型之责任链模式(总复习版本)---脚踏实地,一步一个脚印
一、什么是责任链模式: 责任链模式属于行为型模式,是为请求创建了一个接收者对象的链,将链中每一个节点看作是一个对象,每个节点处理的请求均不同,且内部自动维护一个下一节点对象。 当一个请求从链式的首端发出时&a…...

STM32+W5500实现以太网通信
STM32系列32位微控制器基于Arm Cortex-M处理器,旨在为MCU用户提供新的开发自由度。它包括一系列产品,集高性能、实时功能、数字信号处理、低功耗/低电压操作、连接性等特性于一身,同时还保持了集成度高和易于开发的特点。本例采用STM32作为MC…...

全网最详细,Jmeter性能测试-性能基础详解,终成测试卷王(一)
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 发起请求 发起HTTP…...

人工智能概述
一、人工智能发展必备三要素 算法 数据 算力 CPU、GPU、TPU 计算力之CPU、GPU对比: CPU主要适合I\O密集型任务GPU主要适合计算密集型任务 什么样的程序适合在GPU上运行? 计算密集型的程序 所谓计算密集型(Compute-intensive)的程序,就是…...

API接口安全—webservice、Swagger、WEBpack
API接口安全—webservice、Swagger、WEBpack1. API接口介绍1.1. 常用的API接口类1.1.1. API接口分类1.1.1.1. 类库型API1.1.1.2. 操作系统型API1.1.1.3. 远程应用型API1.1.1.4. WEB应用型API1.1.1.5. 总结1.1.2. API接口类型1.1.2.1. HTTP类接口1.1.2.2. RPC类接口1.1.2.3. web…...

从前M个字母中取N个的无重复排列 [2*+]
目录 从前M个字母中取N个的无重复排列 [2*+] 程序设计 程序分析 从前M个字母中取N个的无重复排列 [2*+] 输出从前M个字母中取N个的无重复字母排列 Input 输入M N 1<=M=10, N<=M Output 按字典序输出排列 Sample Input 4 2 Sample Output A B A C A D B A B C B …...

ES forceMerge 强制段合并为什么会提升检索性能?
根据以前的测试,forceMerge段合并,将段的个数合并成一个。带来了将近一倍的性能提升,测试过程文档(请参考我的另外一篇文章):ES优化实战- forceMerge搜索提升测试报告_es forcemerge_水的精神的博客-CSDN博…...

macOS Ventura 13.3.1 (22E261) Boot ISO 原版可引导镜像
本站下载的 macOS 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装。另外也支持在 Windows 和 Linux 中创建可引导介质。 macOS Ventura 13.3.1 为 Mac 提供下…...

html+css+JavaScript+json+servlet的社区系统(手把手教学)
目录 课前导读: 一、系统前期准备 二、前端代码的编写 三、登陆页面简介 四、注册页面 五、社区列表页 六、社区详情页 七、社区发帖页 八、注销 九、访问链接 登陆页面http://175.178.20.77:8080/java106_blog_system/login.html 总结: 课前…...

UI Toolkit(1)
UI ToolkitUI Toolkit界面画布设置背景制作UI布局UI Toolkit界面 在Unity 2021LTS版本之后UI Toolkit也被内置在Unity中,Unity有意的想让UI Toolkit 成为UI的主要搭建方式,当然与UGUI相比还是有一定的差别。他们各有有点,这次我们就开始介绍…...