MySQL having关键字详解、与where的区别
1、having关键字概览
1.1、作用
- 对查询的数据进行筛选
1.2、having关键字产生的原因
- 使用where对查询的数据进行筛选时,where子句中无法使用聚合函数,所以引出having关键字
1.3、having使用语法
- having单独使用(不与group by一起使用,在Oracle中会报错),单独使用时,大部分场合与where相同
- having与group by一起使用,这是having关键字产生的初衷,对分组之后的数据再进行筛选
1.4、having与where的区别
- 一般情况下,where用于过滤数据行,而having用于过滤分组(能用where的地方,不要使用having)
- where中不能出现聚合函数,而having可以使用聚合函数作为条件
- where在数据分组前进行过滤,而having在数据分组后进行过滤(因此where效率一般比having高);where是数据从磁盘读入内存时筛选,而having是在内存中筛选
- where是对数据库文件过滤(过滤条件是表中的字段),而having是对select中查询的字段进行过滤
- where子句中不能使用字段别名,而having子句中可以使用字段别名
- 多表关联查询时,where先筛选再联接,having先联接再筛选
2、having案例
初始化表(以student表为例):
create table if not exists student
(id int null,name varchar(50) null,age int null,sex varchar(2) null,score double null
)
comment '学生表';INSERT INTO student (id, name, age, sex, score) VALUES (1, '张三', 18, '男', 70);
INSERT INTO student (id, name, age, sex, score) VALUES (2, '李四', 17, '男', 60);
INSERT INTO student (id, name, age, sex, score) VALUES (3, '王五', 19, '男', 80);
INSERT INTO student (id, name, age, sex, score) VALUES (4, '赵六', 16, '男', 90);
INSERT INTO student (id, name, age, sex, score) VALUES (5, '七七', 16, '女', 95);
INSERT INTO student (id, name, age, sex, score) VALUES (6, '九九', 17, '女', 85);
INSERT INTO student (id, name, age, sex, score) VALUES (7, '十一', 18, '女', 80);
INSERT INTO student (id, name, age, sex, score) VALUES (8, '小明', 19, '男', 90);
INSERT INTO student (id, name, age, sex, score) VALUES (9, '小军', 17, '男', 55);
INSERT INTO student (id, name, age, sex, score) VALUES (10, '小雷', 19, '女', 60);
2.1、having单独使用
案例1:查询学生表中,成绩在80分以上的数据
select * from student having score >= 80
等同于:
select * from student where score >= 80
having使用的错误:
select id,name,age
from student
having score >= 80 -- 报错,score筛选条件没有出现在select中
where使用的错误:
selectid,name,age,score as fenshu
from student
where fenshu >= 80 -- 报错,where子句中不能使用字段别名
2.2、having与group by一起使用
案例2:求各个年龄段的平均分和年龄
select age,avg(score) from student group by age
如下:

案例3:求学生平均分大于80分的年龄段及平均分
- 这里只能使用having,对平均分进行筛选,使用where会报错
selectage,avg(score)
from student
group by age
having avg(score) > 80
-- 结果为16岁
案例4:查询学生年龄平均分大于80分中,男生的信息(姓名,男生的分数)
selectname,sex,age,score
from student
where sex = '男'
group by name,sex,age,score
having avg(score) > 80
结果:

相关文章:
MySQL having关键字详解、与where的区别
1、having关键字概览 1.1、作用 对查询的数据进行筛选 1.2、having关键字产生的原因 使用where对查询的数据进行筛选时,where子句中无法使用聚合函数,所以引出having关键字 1.3、having使用语法 having单独使用(不与group by一起使用&a…...
CSS中相对定位与绝对定位的区别及作用
CSS中相对定位与绝对定位的区别及作用 场景复现核心干货相对定位绝对定位子绝父相🔥🔥定位总结绝对定位与相对定位的区别 场景复现 在学习前端开发的过程中,熟练掌握页面布局和定位是非常重要的,因此近期计划出一个专栏ÿ…...
7.1 基本运放电路(1)
集成运放的应用首先表现在它能构成各种运算电路上,并因此而得名。在运算电路中,以输入电压作为自变量,以输出电压作为函数;当输入电压变化时,输出电压将按一定的数学规律变化,即输出电压反映输入电压某种运…...
交友项目【首页推荐,今日佳人,佳人信息】
目录 1:首页推荐 1.1:接口地址 1.2:流程分析 1.3:代码实现 2:今日佳人 1.1:接口地址 1.2:流程分析 1.3:代码实现 3:佳人信息 1.1:接口地址 1.2&am…...
kafka-5 kafka的高吞吐量和高可用性
kafka的高吞吐量和高可用性 6.1 高吞吐量6.2 高可用(HA) 6.1 高吞吐量 kafka的高吞吐量主要是由4方面保证的: (1)顺序读写磁盘 Kafka是将消息持久化到本地磁盘中的,一般人会认为磁盘读写性能差ÿ…...
Jmeter前置处理器和后置处理器
1. 后置处理器(Post Processor) 本质上是⼀种对sampler发出请求后接受到的响应数据进⾏处理 (后处理)的⽅法 正则表达式后置处理器 (1)引⽤名称:下⼀个请求要引⽤的参数名称,如填写title,则可…...
手把手带你了解《线程池》
文章目录 线程池的概念池的目的线程池的优势为什么从池子里拿线程更高效?构造方法参数讲解线程拒绝策略模拟实现线程池一个线程池设置多少线程合适? 线程池的概念 线程池:提前把线程准备好,创建线程不是直接从系统申请࿰…...
idea中使用git工具
目录 一、IDEA中配置git二、git操作将项目设置成git仓库 一、IDEA中配置git 打开idea,点击File–>Settings 点击版本控制,然后点击git 将你的git.exe安装目录填到下面位置 点击test可以看到显示了版本,说明配置成功 二、git操作 将项目设…...
剖析DLL(动态链接库)的使用方法
为了更好地理解和应用dll,我们首先需要了解dll的概念和原理。 一、dll(Dynamic Link Library)的概念 dll是一种动态链接库,它是在Windows操作系统中广泛使用的一种机制,它允许程序在运行时调用动态链接库中的函数。d…...
第二章 设计模式七大原则
文章目录 前言一、单一职责 🍧1、单一职责原则注意事项和细节2、代码实现2、1 错误示例2、2 正确示例但有缺陷2、3 最终形态 二、接口隔离原则 🥩1、代码示例 三、依赖倒转原则 🥥1、代码示例2、依赖关系传递的三种方式 四、里氏替换原则 &am…...
计网第五章.运输层—TCP报文的首部
以下来自湖科大计算机网络公开课笔记及个人所搜集资料 TCP报文格式如下: 那6个标志位对应的中文名: 下面是按TCP首部的顺序介绍各个字段: 源端口和目的端口分别是表示发送TCP报文段的应用进程。从网络编程角度,进程里创建sock…...
程序员最新赚钱指南!
程序员们的主要收入来源 1️⃣首先,我们要明白程序员无论编程开发多么努力,随着时间推移,受年龄、生活、健康等因素,程序员们都会面临职业天花板,这是大多数人不可规避的一个事实。 2️⃣其次,这几年因为…...
如何快速获取淘宝商品的详细信息?看这里就够了
taobao.item_get 公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)secretString是调用密钥api_nameString是API接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]cacheString否[yes,…...
id生成器
使用说明 ⚠️ 所有使用id的业务场景,应该在数据库层设置合理的唯一索引 功能 自增id 基于 redis 自增 redis 中的key为:[spring.application.name].idGenetate.[key] ⚠️ key 在不同的业务不应该重复使用,否则单号无法连续使用 private f…...
为什么许多人吐槽C++11,那些语法值得我们学习呢?
致前行的人: 人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定冷静,学习如何从慌乱中找到生机。 目录 1.C11简介 2.统一的列表初始化 2.1 {}初始化 …...
千耘农机导航的“星地一体”能力究竟是什么?
伴随农业机械化和智能化的发展,越来越多的人开始使用农机自动驾驶系统助力耕作,千耘农机导航的“星地一体”能力可有效解决信号受限的问题,实现作业提效。究竟什么是“星地一体”,又是如何解决智能化农机作业的痛点的?…...
(数字图像处理MATLAB+Python)第四章图像正交变换-第四、五节:Radon变换和小波变换
文章目录 一:Radon变换(1)Radon变换原理(2)Radon变换实现(3)Radon变换性质(4)Radon变换应用 二:小波变换(1)小波A:定义B&a…...
舌体胖瘦的自动分析-曲线拟合-或许是最简单判断舌形的方案(六)
返回至系列文章导航博客 1 简介 在中医智能舌诊项目中需要舌体胖瘦的自动分析 舌体胖瘦是中医诊断中重要的观察依据,。胖大舌“舌色淡白,舌体胖嫩,比正常舌大而厚,甚至充满口腔”,主脾肾阳虚,气化失常&am…...
牛顿法、梯度下降法与拟牛顿法
牛顿法、梯度下降法与拟牛顿法 0 引言1 关于泰勒展开式1.1 原理1.2 例子 2 牛顿法2.1 x 为一维2.2 x 为多维 3 梯度下降法4 拟牛顿法4.1 拟牛顿条件4.2 DFP 算法4.3 BFGS 算法4.4 L-BFGS 算法 0 引言 机器学习中在求解非线性优化问题时,常用的是梯度下降法和拟牛顿…...
带你浅谈下Quartz的简单使用
Scheduler 每次执行,都会根据JobDetail创建一个新的Job实例,这样就可以规避并发访问的问题(jobDetail的实例也是新的) Quzrtz 定时任务默认都是并发执行,不会等待上一次任务执行完毕,只要间隔时间到就会执…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
