时间序列预测(一)基于Prophet的销售额预测
时间序列预测(一)基于Prophet的销售额预测
小O:小H,有没有什么方法能快速的预测下未来的销售额啊
小H:Facebook曾经开源了一款时间序列预测算法fbprophet,简单又快速~
传统的时间序列算法很多,例如AR、MA、ARIMA等,对于非专业人员来说显得很难上手。而Prophet相对来说就友好多了,而且预测效果又很不错,所以用它来预测时间序列数据再适合不过了。本文主要参考基于facebook的时间序列预测框架prophet的实战应用。
Prophet的安装需要先安装pystan
conda install pystan # 终端上安装,需要执行procced选择y
pip install fbprophet
数据探索
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
from fbprophet import Prophet
from sklearn.metrics import mean_squared_error
from math import sqrt
import datetime
from xgboost import XGBRegressor
from sklearn.metrics import explained_variance_score, mean_absolute_error, \
mean_squared_error, r2_score # 批量导入指标算法from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import GridSearchCV
以下数据如果有需要的同学可关注公众号HsuHeinrich,回复【数据挖掘-时间序列01】自动获取~
# 读取数据
raw_data = pd.read_csv('train.csv')
raw_data.head()
# 转化为日期
raw_data['datetime'] = raw_data['datetime'].apply(pd.to_datetime)
# 查看历史销售趋势
plt.figure(figsize = (15,8))
sns.lineplot(x = 'datetime', y = 'count', data = raw_data, err_style=None)
plt.show()
特征工程
# 构造prophet需要的ds/y数据
df_model = raw_data[['datetime', 'count']].rename(columns = {'datetime': 'ds','count': 'y'})
模型拟合
# 模型拟合
model_fb = Prophet(interval_width = 0.95).fit(df_model)
# 构造预测日期
future_dates = model_fb.make_future_dataframe(periods = 100, freq='H')
# 预测结果
forecast = model_fb.predict(future_dates)
INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.
# 预测最后几周的日期
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
结果展示
# 观察预测效果
model_fb.plot(forecast);
# 观察趋势因素
model_fb.plot_components(forecast);
# 模型评估 MSE
metric_df = forecast.set_index('ds')[['yhat']].join(df_model.set_index('ds').y).reset_index()
metric_df.dropna(inplace=True)
error = mean_squared_error(metric_df.y, metric_df.yhat)
print('The MSE is {}'. format(error))
The MSE is 12492.842870220222
添加假期因素
# 定义假期因素
def is_school_holiday_season(ds): date = pd.to_datetime(ds)starts = datetime.date(date.year, 7, 1)ends = datetime.date(date.year, 9, 9)return starts < date.to_pydatetime().date() < endsdf_model['school_holiday_season'] = df_model['ds'].apply(is_school_holiday_season)
df_model['not_school_holiday_season'] = ~df_model['ds'].apply(is_school_holiday_season)
model_fb = Prophet(interval_width=0.95)
# 添加假期因素
model_fb.add_seasonality(name='school_holiday_season', period=365, fourier_order=3, condition_name='school_holiday_season')
model_fb.add_seasonality(name='not_school_holiday_season', period=365, fourier_order=3, condition_name='not_school_holiday_season')
model_fb.fit(df_model)
INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.<fbprophet.forecaster.Prophet at 0x7ff4e48833d0>
# 构造日期
future_dates = model_fb.make_future_dataframe(periods=100, freq='H')
future_dates['school_holiday_season'] = future_dates['ds'].apply(is_school_holiday_season)
future_dates['not_school_holiday_season'] = ~future_dates['ds'].apply(is_school_holiday_season)
# 预测
forecast = model_fb.predict(future_dates)plt.figure(figsize=(10, 5))
model_fb.plot(forecast);
<Figure size 720x360 with 0 Axes>
# 观察趋势因素
model_fb.plot_components(forecast);
# 模型评估 MSE
metric_df = forecast.set_index('ds')[['yhat']].join(df_model.set_index('ds').y).reset_index()
metric_df.dropna(inplace=True)
error = mean_squared_error(metric_df.y, metric_df.yhat)
print('The MSE is {}'. format(error))
The MSE is 12431.431390456968
添加假期因素后预测上没有提升。这里只是介绍如何增加自定义趋势因素而已,所以没有提升在预期之内
总结
当你只需要预测数据时,只需简单的两列ds
,y
即可,整个预测过程简单易上手~
共勉~
相关文章:

时间序列预测(一)基于Prophet的销售额预测
时间序列预测(一)基于Prophet的销售额预测 小O:小H,有没有什么方法能快速的预测下未来的销售额啊 小H:Facebook曾经开源了一款时间序列预测算法fbprophet,简单又快速~ 传统的时间序列算法很多&a…...

【电科复试第一名】23上交819考研经验分享
笔者来自通信考研小马哥23上交819全程班学员 819,上岸经验贴,知无不言 初试第十一,复试第一,总分第七(与第六同分) 考研经历:本科就读与湖南某末985,大学时间没好好学习,天天打王者,玩steam上…...

每日学术速递4.24
CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Collaborative Diffusion for Multi-Modal Face Generation and Editing(CVPR 2023) 标题:多模态人脸生成和编辑的协同扩散 作者:Ziqi Huang, Kelvin C.K. …...

怎么把mkv文件转成mp4格式,3招立马处理
怎么把mkv文件转成mp4格式的方法你知道吗?我想很多朋友会遇到这样的情况,下载视频后发现无法打开。原来我们下载的视频格式是mkv,也许这个格式大家不是很熟悉的。那么今天就来认识一下,mkv是Matroska的一种媒体文件,mk…...

SEO机制算是让我玩明白了
获取当前时间时间戳,返回遵循ISO 8601扩展格式的日期 new Date(Date.now()).toISOString() 使用moment库转换回来 this.moment(new Date(Date.now()).toISOString()).format("YYYY-MM-DD") js去掉富文本中html标签和图片 filterHtmlTag(val) {if(!val){…...

JDBC连接数据库详细教程指南
目录 一、JDBC介绍 二、JDBC环境的搭建 三、JDBC的开发步骤 1、加载JDBC驱动程序 2、建立数据库连接 3、创建Statement对象 4、执行SQL语句 5、处理结果集 6、关闭连接 7、示例程序 8、注意 一、JDBC介绍...

换个花样玩C++(2)柔性数组怎么玩
如果你涉足网络传输方向的开发,我想你对这段类似的代码应该不会很陌生,先看代码: int check_msg(svr_proto_t* pkg, uint32_t bodylen, fdsession_t* fdsess) {struct report_msg {uint32_t gameid;uint32_t userid;uint32_t recvid;uint32_t onlineid;uint32_t …...

【前端】一个好看的前端页面
序言 突发奇想,看到这个特效还不错,就加工了一下,如果也能帮到你,很开心 先上效果图 部分代码讲解 前端生成uuid function getUUID(len, radix) {var chars 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.s…...

flink on k8s提交任务
目录 相关文档前置准备构建镜像提交任务 相关文档 https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/deployment/resource-providers/native_kubernetes/ 前置准备 flink的lib目录下放入两个依赖 bcpkix-jdk15on-1.68.jar bcprov-jdk15on-1.69.jar 创建用户…...

如何判定自己适合自学编程还是报班?
首先在这里,不做偏向性推荐,主要还是看个人条件。 宝剑锋从磨砺出,学习本身是一件艰苦的事情。在决定之前,建议先按照下图问自己三个问题自我检测。 如果你还不能确定,自学和报班的优劣势分析,或许能帮你们…...

本地缓存解决方案Caffeine | Spring Cloud 38
一、Caffeine简介 Caffeine是一款高性能、最优缓存库。Caffeine是受Google guava启发的本地缓存(青出于蓝而胜于蓝),在Cafeine的改进设计中借鉴了 Guava 缓存和 ConcurrentLinkedHashMap,Guava缓存可以参考上篇:本地缓…...

Docker常用命令笔记
docker常用命令 1 基础命令 sudo docker version #查看docker的版本信息 sudo docker info #查看docker系统信息,包括镜像和容器的数量 2 镜像命令 1.sudo docker images #查看本地主机的所有主机镜像 #解释 **REPOSITORY **#镜像的仓库源TAG **** …...

Nachos系统的上下文切换
Fork调用创建进程 在实验1中通过gdb调试初步熟悉了Nahcos上下文切换的基本流程,但这个过程还不够清晰,通过源码阅读进一步了解这个过程。 在实验1中通过执行Threadtest,Fork创建子进程,并传入SimpleThread执行currentThread->…...

streamx平台部署
一. streamx介绍 StreamPark 总体组件栈架构如下, 由 streampark-core 和 streampark-console 两个大的部分组成 , streampark-console 是一个非常重要的模块, 定位是一个综合实时数据平台,流式数仓平台, 低代码 ( Low Code ), Flink & Spark 任务托…...

css中的background属性
文章目录 一:background-repeat二:background-position三:background缩写方式三:background-size四:background-origin五:background-clip 在日常前端开发中,经常需要进行背景或背景图的处理。但…...

代码评审平台Gerrit安装配置方法介绍
Gerrit是一款开源免费的基于 web 的代码审查工具,是基于 Git 的版本控制系统。在代码入库之前对开发人员的提交进行审阅,检视通过的代码才能提交入库。本文记录如何安装部署gerrit平台。 目录 Gerrit简介环境准备1. 安装Java2. 安装Git3. 安装nginx4. 安…...

一篇文章解决Mysql8
基于尚硅谷的Mysql8.0视频,修修改改。提取了一些精炼的内容。 首先需要在数据库内引入一张表。链接地址如下。 链接:https://pan.baidu.com/s/1DD83on3J1a2INI7vrqPe4A 提取码:68jy 会进行持续更新。。 1. Mysql目录结构 Mysql的目录结构…...

【Python】【进阶篇】6、Django视图函数
目录 6、Django视图函数1. 第一个视图函数1)HttpResponse视图响应类型2)视图函数参数request3)return视图响应 2. 视图函数执行过程 6、Django视图函数 视图是 MTV 设计模式中的 V 层,它是实现业务逻辑的关键层,可以用…...

Latex常用符号和功能记录
公式下括号 \underbrace & \overbrace \begin{equation} \underbrace{L_1L_2}_{loss ~ 1} \overbrace{L_3L_4}^{loss ~ 2} \end{equation}L L 1 L 2 ⏟ l o s s 1 L 3 L 4 ⏞ l o s s 2 L \underbrace{L_1L_2}_{loss ~ 1} \overbrace{L_3L_4}^{loss ~ 2} Lloss 1…...

MySQL高级篇——索引的创建与设计原则
导航: 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线牛客面试题 目录 一、索引的分类与使用 1.1 索引的分类 1.1.1. 普通索引 1.1.2. 唯一性索引 1.1.3. 主键索引(唯一非空) 1.1.4…...

王一茗: “大数据能力提升项目”与我的成长之路 | 提升之路系列(三)
导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项…...

MySQL:数据库的基本操作
MySQL是一个客户端服务器结构的程序, 一.关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2 等. …...

银行系统【GUI/Swing+MySQL】(Java课设)
系统类型 Swing窗口类型Mysql数据库存储数据 使用范围 适合作为Java课设!!! 部署环境 jdk1.8Mysql8.0Idea或eclipsejdbc 运行效果 本系统源码地址:https://download.csdn.net/download/qq_50954361/87708777 …...

【社区图书馆】-《科技服务与价值链》总结
【为什么研究价值链】 价值链及价值链协同体系是现代产业集群的核心枢纽,是推进城市群及产业集群化、服务化、生态化发展的纽带。因而推进价值链协同,创新发展价值链协同业务科技资源体系,既是科技服务业创新的重要方向,也是重塑生…...

工具链和其他-异步模块加载
目录 CMD/AMD Asynchronous Module Definition(AMD异步模块定义,语法风格) Common Module Definition ES6/CommonJS CommonJS ES6 Module 加载器示例 总结 cmd和amd的区别 现在有哪些异步加载方式 整体结构 编程:commonjs es6 module (有可能解…...

第一次使用R语言
在R语言中,“<-”符号与“”意义一样。另一种奇怪的R语言的等号表示方法,是以“->”表示,但是用得少。 有些计算机语言,变量在使用前要先定义,R语言则不需先定义,可在程序中直接设定使用。 若在Con…...

《语文教学通讯》栏目 收稿范围
《语文教学通讯》创刊于1978年,是由山西师范大学主管,山西师大教育科技传媒集团主办的期刊。历年被人民大学书报资料中心转载、复印的篇幅数量均居同类报刊之首。国内刊号:CN 14-1017/G4,国际刊号:ISSN 1004-6097&…...

Towards Principled Disentanglement for Domain Generalization
本文用大量的理论论述了基于解纠缠约束优化的域泛化问题。 这篇文章认为以往的文章在解决域泛化问题时所用的方法都是non-trivial的,也就是说没有作严格的证明,是不可解释的,而本文用到大量的定理和推论证明了方法的有效性。 动机 因为域泛…...

计算机网络学习02
1、TCP 与 UDP 的区别? 是否面向连接 : UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。是否是可靠传输: 远地主机在收到 UDP 报文后&…...

网络交换机端口管理工具
如今,企业或组织级网络使用数百个交换机端口作为其 IT 基础架构的一部分来实现网络连接。这使得交换机端口管理成为日常网络管理任务的一部分。传统上,网络管理员必须依靠手动网络交换机端口管理技术来跟踪交换机及其端口连接状态。这种手动任务弊大于利…...