当前位置: 首页 > news >正文

时间序列预测(一)基于Prophet的销售额预测

时间序列预测(一)基于Prophet的销售额预测

小O:小H,有没有什么方法能快速的预测下未来的销售额啊

小H:Facebook曾经开源了一款时间序列预测算法fbprophet,简单又快速~

传统的时间序列算法很多,例如AR、MA、ARIMA等,对于非专业人员来说显得很难上手。而Prophet相对来说就友好多了,而且预测效果又很不错,所以用它来预测时间序列数据再适合不过了。本文主要参考基于facebook的时间序列预测框架prophet的实战应用。

Prophet的安装需要先安装pystan

conda install pystan # 终端上安装,需要执行procced选择y
pip install fbprophet

数据探索

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
from fbprophet import Prophet
from sklearn.metrics import mean_squared_error
from math import sqrt
import datetime
from xgboost import XGBRegressor
from sklearn.metrics import explained_variance_score, mean_absolute_error, \
mean_squared_error, r2_score  # 批量导入指标算法from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import GridSearchCV

以下数据如果有需要的同学可关注公众号HsuHeinrich,回复【数据挖掘-时间序列01】自动获取~

# 读取数据
raw_data = pd.read_csv('train.csv')
raw_data.head()

image-20230206153328512

# 转化为日期
raw_data['datetime'] = raw_data['datetime'].apply(pd.to_datetime)
# 查看历史销售趋势
plt.figure(figsize = (15,8))
sns.lineplot(x = 'datetime', y = 'count', data = raw_data, err_style=None)
plt.show()

output_10_0

特征工程

# 构造prophet需要的ds/y数据
df_model = raw_data[['datetime', 'count']].rename(columns = {'datetime': 'ds','count': 'y'})

模型拟合

# 模型拟合
model_fb = Prophet(interval_width = 0.95).fit(df_model)
# 构造预测日期
future_dates = model_fb.make_future_dataframe(periods = 100, freq='H')
# 预测结果
forecast = model_fb.predict(future_dates)
INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.
# 预测最后几周的日期
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

image-20230206153349362

结果展示

# 观察预测效果
model_fb.plot(forecast);

output_16_0

# 观察趋势因素
model_fb.plot_components(forecast);

output_17_0

# 模型评估 MSE
metric_df = forecast.set_index('ds')[['yhat']].join(df_model.set_index('ds').y).reset_index()
metric_df.dropna(inplace=True)
error = mean_squared_error(metric_df.y, metric_df.yhat)
print('The MSE is {}'. format(error))
The MSE is 12492.842870220222

添加假期因素

# 定义假期因素
def is_school_holiday_season(ds):    date = pd.to_datetime(ds)starts = datetime.date(date.year, 7, 1)ends = datetime.date(date.year, 9, 9)return starts < date.to_pydatetime().date() < endsdf_model['school_holiday_season'] = df_model['ds'].apply(is_school_holiday_season)
df_model['not_school_holiday_season'] = ~df_model['ds'].apply(is_school_holiday_season)
model_fb = Prophet(interval_width=0.95)
# 添加假期因素
model_fb.add_seasonality(name='school_holiday_season', period=365, fourier_order=3, condition_name='school_holiday_season')
model_fb.add_seasonality(name='not_school_holiday_season', period=365, fourier_order=3, condition_name='not_school_holiday_season')
model_fb.fit(df_model)
INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.<fbprophet.forecaster.Prophet at 0x7ff4e48833d0>
# 构造日期
future_dates = model_fb.make_future_dataframe(periods=100, freq='H')
future_dates['school_holiday_season'] = future_dates['ds'].apply(is_school_holiday_season)
future_dates['not_school_holiday_season'] = ~future_dates['ds'].apply(is_school_holiday_season)
# 预测
forecast = model_fb.predict(future_dates)plt.figure(figsize=(10, 5))
model_fb.plot(forecast);
<Figure size 720x360 with 0 Axes>

output_24_1

# 观察趋势因素
model_fb.plot_components(forecast);

output_25_0

# 模型评估 MSE
metric_df = forecast.set_index('ds')[['yhat']].join(df_model.set_index('ds').y).reset_index()
metric_df.dropna(inplace=True)
error = mean_squared_error(metric_df.y, metric_df.yhat)
print('The MSE is {}'. format(error))
The MSE is 12431.431390456968

添加假期因素后预测上没有提升。这里只是介绍如何增加自定义趋势因素而已,所以没有提升在预期之内

总结

当你只需要预测数据时,只需简单的两列dsy即可,整个预测过程简单易上手~

共勉~

相关文章:

时间序列预测(一)基于Prophet的销售额预测

时间序列预测&#xff08;一&#xff09;基于Prophet的销售额预测 小O&#xff1a;小H&#xff0c;有没有什么方法能快速的预测下未来的销售额啊 小H&#xff1a;Facebook曾经开源了一款时间序列预测算法fbprophet&#xff0c;简单又快速&#xff5e; 传统的时间序列算法很多&a…...

【电科复试第一名】23上交819考研经验分享

笔者来自通信考研小马哥23上交819全程班学员 819&#xff0c;上岸经验贴&#xff0c;知无不言 初试第十一&#xff0c;复试第一&#xff0c;总分第七(与第六同分) 考研经历:本科就读与湖南某末985&#xff0c;大学时间没好好学习&#xff0c;天天打王者&#xff0c;玩steam上…...

每日学术速递4.24

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Collaborative Diffusion for Multi-Modal Face Generation and Editing(CVPR 2023) 标题&#xff1a;多模态人脸生成和编辑的协同扩散 作者&#xff1a;Ziqi Huang, Kelvin C.K. …...

怎么把mkv文件转成mp4格式,3招立马处理

怎么把mkv文件转成mp4格式的方法你知道吗&#xff1f;我想很多朋友会遇到这样的情况&#xff0c;下载视频后发现无法打开。原来我们下载的视频格式是mkv&#xff0c;也许这个格式大家不是很熟悉的。那么今天就来认识一下&#xff0c;mkv是Matroska的一种媒体文件&#xff0c;mk…...

SEO机制算是让我玩明白了

获取当前时间时间戳&#xff0c;返回遵循ISO 8601扩展格式的日期 new Date(Date.now()).toISOString() 使用moment库转换回来 this.moment(new Date(Date.now()).toISOString()).format("YYYY-MM-DD") js去掉富文本中html标签和图片 filterHtmlTag(val) {if(!val){…...

JDBC连接数据库详细教程指南

目录 一、JDBC介绍 二、JDBC环境的搭建 三、JDBC的开发步骤 1、加载JDBC驱动程序 2、建立数据库连接 3、创建Statement对象 4、执行SQL语句 5、处理结果集 6、关闭连接 7、示例程序 8、注意 一、JDBC介绍...

换个花样玩C++(2)柔性数组怎么玩

如果你涉足网络传输方向的开发,我想你对这段类似的代码应该不会很陌生,先看代码: int check_msg(svr_proto_t* pkg, uint32_t bodylen, fdsession_t* fdsess) {struct report_msg {uint32_t gameid;uint32_t userid;uint32_t recvid;uint32_t onlineid;uint32_t …...

【前端】一个好看的前端页面

序言 突发奇想&#xff0c;看到这个特效还不错&#xff0c;就加工了一下&#xff0c;如果也能帮到你&#xff0c;很开心 先上效果图 部分代码讲解 前端生成uuid function getUUID(len, radix) {var chars 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.s…...

flink on k8s提交任务

目录 相关文档前置准备构建镜像提交任务 相关文档 https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/deployment/resource-providers/native_kubernetes/ 前置准备 flink的lib目录下放入两个依赖 bcpkix-jdk15on-1.68.jar bcprov-jdk15on-1.69.jar 创建用户…...

如何判定自己适合自学编程还是报班?

首先在这里&#xff0c;不做偏向性推荐&#xff0c;主要还是看个人条件。 宝剑锋从磨砺出&#xff0c;学习本身是一件艰苦的事情。在决定之前&#xff0c;建议先按照下图问自己三个问题自我检测。 如果你还不能确定&#xff0c;自学和报班的优劣势分析&#xff0c;或许能帮你们…...

本地缓存解决方案Caffeine | Spring Cloud 38

一、Caffeine简介 Caffeine是一款高性能、最优缓存库。Caffeine是受Google guava启发的本地缓存&#xff08;青出于蓝而胜于蓝&#xff09;&#xff0c;在Cafeine的改进设计中借鉴了 Guava 缓存和 ConcurrentLinkedHashMap&#xff0c;Guava缓存可以参考上篇&#xff1a;本地缓…...

Docker常用命令笔记

docker常用命令 1 基础命令 sudo docker version #查看docker的版本信息 sudo docker info #查看docker系统信息&#xff0c;包括镜像和容器的数量 2 镜像命令 1&#xff0e;sudo docker images #查看本地主机的所有主机镜像 #解释 **REPOSITORY **#镜像的仓库源TAG **** …...

Nachos系统的上下文切换

Fork调用创建进程 在实验1中通过gdb调试初步熟悉了Nahcos上下文切换的基本流程&#xff0c;但这个过程还不够清晰&#xff0c;通过源码阅读进一步了解这个过程。 在实验1中通过执行Threadtest&#xff0c;Fork创建子进程&#xff0c;并传入SimpleThread执行currentThread->…...

streamx平台部署

一. streamx介绍 StreamPark 总体组件栈架构如下&#xff0c; 由 streampark-core 和 streampark-console 两个大的部分组成 , streampark-console 是一个非常重要的模块, 定位是一个综合实时数据平台&#xff0c;流式数仓平台, 低代码 ( Low Code ), Flink & Spark 任务托…...

css中的background属性

文章目录 一&#xff1a;background-repeat二&#xff1a;background-position三&#xff1a;background缩写方式三&#xff1a;background-size四&#xff1a;background-origin五&#xff1a;background-clip 在日常前端开发中&#xff0c;经常需要进行背景或背景图的处理。但…...

代码评审平台Gerrit安装配置方法介绍

Gerrit是一款开源免费的基于 web 的代码审查工具&#xff0c;是基于 Git 的版本控制系统。在代码入库之前对开发人员的提交进行审阅&#xff0c;检视通过的代码才能提交入库。本文记录如何安装部署gerrit平台。 目录 Gerrit简介环境准备1. 安装Java2. 安装Git3. 安装nginx4. 安…...

一篇文章解决Mysql8

基于尚硅谷的Mysql8.0视频&#xff0c;修修改改。提取了一些精炼的内容。 首先需要在数据库内引入一张表。链接地址如下。 链接&#xff1a;https://pan.baidu.com/s/1DD83on3J1a2INI7vrqPe4A 提取码&#xff1a;68jy 会进行持续更新。。 1. Mysql目录结构 Mysql的目录结构…...

【Python】【进阶篇】6、Django视图函数

目录 6、Django视图函数1. 第一个视图函数1&#xff09;HttpResponse视图响应类型2&#xff09;视图函数参数request3&#xff09;return视图响应 2. 视图函数执行过程 6、Django视图函数 视图是 MTV 设计模式中的 V 层&#xff0c;它是实现业务逻辑的关键层&#xff0c;可以用…...

Latex常用符号和功能记录

公式下括号 \underbrace & \overbrace \begin{equation} \underbrace{L_1L_2}_{loss ~ 1} \overbrace{L_3L_4}^{loss ~ 2} \end{equation}L L 1 L 2 ⏟ l o s s 1 L 3 L 4 ⏞ l o s s 2 L \underbrace{L_1L_2}_{loss ~ 1} \overbrace{L_3L_4}^{loss ~ 2} Lloss 1…...

MySQL高级篇——索引的创建与设计原则

导航&#xff1a; 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线牛客面试题 目录 一、索引的分类与使用 1.1 索引的分类 1.1.1. 普通索引 1.1.2. 唯一性索引 1.1.3. 主键索引&#xff08;唯一非空&#xff09; 1.1.4…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...