Redis高可用部署架构
目录
- 1. 主从复制与哨兵架构:
- 2. Redis集群架构:
Redis高可用部署可以采用主从复制与哨兵架构或Redis集群架构。下面将分别介绍这两种架构的架构图、优缺点和具体应用场景。
1. 主从复制与哨兵架构:
架构图:
+----------+| Client |+----+-----+|+-------v-------+| Sentinel |+-------+-------+|
+-------------+------------+
| Redis Master |
| |
| |
+-------------+------------+|+---------+---------+| Redis Slave 1 || || |+---------------------+
优点:
- 简单易懂:相对于Redis集群,主从复制与哨兵架构配置相对简单。
- 故障转移:哨兵能够自动监控主节点的状态,并在主节点故障时进行自动故障转移,提高了系统的可用性。
- 数据冗余:通过主从复制,从节点可以复制主节点的数据,提供了数据冗余,从而增强了数据的可靠性。
缺点:
- 有限的横向扩展能力:主从复制架构对于大规模数据和高并发负载的情况,横向扩展能力有限。
- 哨兵作为单点故障:哨兵本身也可能成为单点故障,需要在部署时进行充分考虑和容错处理。
应用场景:
- 对于小规模数据和相对简单的应用场景,主从复制与哨兵架构是一个可行的选择。
- 需要快速部署和配置,并且不需要进行大规模横向扩展的场景。
2. Redis集群架构:
架构图:
+-------------+ +-------------+
| Redis Node 1|----->| Redis Node 2|
+-------------+ +-------------+| || +-------------++----->| Redis Node 3|+-------------+
优点:
- 横向扩展:Redis集群可以通过添加新的节点来进行横向扩展,以应对大规模数据和高并发负载的需求。
- 高可用:Redis集群自动进行数据分片和数据迁移,提供了高可用性和负载均衡。
- 无中心化:Redis集群中没有单一的中心节点,降低了单点故障的风险。
缺点:
- 复杂性:相对于主从复制与哨兵架构,Redis集群架构配置和管理更为复杂。
- 数据一致性:在进行数据迁移或节点故障恢复时,可能会出现短暂的数据不一致性。
应用场景:
- 需要处理大规模数据和高并发负载的应用场景,如高流量的Web应用、社交网络等。
- 需要横向扩展能力和高可用性的场景。
总结:
选择合适的Redis高可用部署架构取决于您的应用需求和场景。如果需要简单的部署和配置,并且应用规模较小,主从复制与哨兵架构可能是一个不错的选择。如果需要横向扩展能力和高可用性,处理大规模数据和高并发负载,Redis集群架构是一个更好的选择。无论选择哪种架构,都应该充分考虑数据备份、监控和故障处理等因素,以确保Redis高可用部署的稳定性和可靠性。
相关文章:
Redis高可用部署架构
目录 1. 主从复制与哨兵架构:2. Redis集群架构: Redis高可用部署可以采用主从复制与哨兵架构或Redis集群架构。下面将分别介绍这两种架构的架构图、优缺点和具体应用场景。 1. 主从复制与哨兵架构: 架构图: ----------| Client…...

深度学习与神经网络
人工智能,机器学习,深度学习,神经网络,emmmm,傻傻分不清楚,这都啥呀,你知道吗?我不知道。你知道吗?我不知道。 来来来,接下来,整硬菜:…...

CPU密集型和IO密集型任务的权衡:如何找到最佳平衡点
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、CPU密集型与IO密集型3.1、CPU密集型3.2、I/O密…...

超越POSIX:一个时代的终结?
在本文中,我们通过对Portable Operating System Interface(POSIX)抽象的历史演变进行系统性的回顾,提供了一个全面的视图。我们讨论了推动这些演变的一些关键因素,并确定了在构建现代应用程序时使它们不可行的缺陷。 …...
秋招算法备战第22天 | 654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树
235. 二叉搜索树的最近公共祖先 - 力扣(LeetCode) 在一个二叉搜索树中,两个节点 p 和 q 的最近公共祖先可以通过以下的算法找到: 从根节点开始。如果当前节点的值大于 p 和 q 的值,那么你需要转向左子树。因为在二叉…...

小程序之移花宫-自定义底部标签图标---【浅入深出系列005】
浅入深出系列总目录在000集 如何0元学微信小程序–【浅入深出系列000】 不会导入/打开小程序的看这里 让别人的小程序长成自己的样子-更换window上下颜色–【浅入深出系列001】 文章目录 本系列校训学习资源的选择 学习目标图标的注意事项图标资源打开小程序动手实践找到图标最…...

题目1 SQL注入(保姆级教程)
url:http://192.168.154.253:81/ #打开http://XXX:81/,XXX为靶机的ip地址 审题 1、打开题目看到有一个提示,此题目需要通过SQL注入漏洞读取/tmp/360/key文件,key在这个文件中 2、开始答题 发现这里url中有一个id的参数࿰…...

PDF转换成word乱码了怎么办?最实用的方法在这里!
在日常办公中,我们常常需要将PDF文件转换成Word文件,以便于编辑和修改。然而有时候在PDF转Word的过程中可能会遇到乱码的问题,让人感到困扰。在面对这种情况时,我们需要选择正确的方法,避免文件转换后出现乱码。下面我…...

字节跳动后端面试,笔试部分
var code "7022f444-ded0-477c-9afe-26812ca8e7cb" 背景 笔者在刷B站的时候,看到了一个关于面试的实录,前半段是八股文,后半段是笔试部分,感觉笔试部分的题目还是挺有意思的,特此记录一下。 笔试部分 问…...

[JavaScript游戏开发] 2D二维地图绘制、人物移动、障碍检测
系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 文章目录 系列文章目录前言一、列计划1.1、目标1.2、步骤 二、使用步骤2.1、准备素材(图片):草坪、人物(熊猫)、障碍(石头)2.2、初…...

区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型
区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型 目录 区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于QRF随机森林分位数回归时间序列区间预测模型࿱…...

.NET网络编程——TCP通信
一、网络编程的基本概念 : 1. 网络 就是将不同区域的电脑连接到一起,组成局域网、城域网或广域网。把分部在不同地理区域的计算机于专门的外部设备用通信线路 互联成一个规模大、功能强的网络系统,从而使众多的计算机可以方便地互相传递信息,…...

【Python机器学习】实验01 Numpy以及可视化回顾
文章目录 一、Numpy的基础知识实验1 生成由随机数组成的三通道图片,分别显示每个维度图片,并将三个通道的像素四周进行填充,分别从上下左右各填充若干数据。 二、Numpy的线性代数运算实验2 请准备一张图片,按照上面的过程进行矩阵…...

vue3-组件中的变化
1. 路由 1. 安装指令:npm i vue-routernext 2. 创建路由:createRouter2. 异步组件(defineAsyncComponent) defineAsyncComponent 是用于定义异步组件的函数。defineAsyncComponent 接受一个工厂函数作为参数,这个工厂…...
认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发
目录 第一章、认识主被动无人机遥感数据 第二章、预处理无人机遥感数据 第三章、定量估算农林植被关键性状 第四章、期刊论文插图精细制作与Appdesigner应用开发 更多推荐 遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的…...
数学建模的六个步骤
一、模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息,以数学思路来解释问题的精髓,数学思路贯彻问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰…...

【计算机组成原理】24王道考研笔记——第二章 数据的表示和运算
第二章 数据的表示和运算 一、数值与编码 1.1 进制转换 任意进制->十进制: 二进制<->八进制、十六进制: 各种进制的常见书写方式: 十进制->任意进制:(用拼凑法最快) 真值:符合人…...

JQ-6 Bootstrap入门到实战;Bootstrap的(优缺点、安装、响应式容器原理、网格系统、响应式工具类、Bootstrap组件);小项目实践
目录 1_认识Bootstrap1.1_概念1.2_起源和历史1.3_Bootstrap优缺点 2_Bootstrap4的安装2.1_方式一 CDN2.2_方式二 : 下载源码引入2.3_方式三 : npm安装 3_Bootstrap初体验4_响应式容器原理4.1_屏幕尺寸的分割点(Breakpoints)4.2_响应式容器Containers 5_网…...

如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?
作为应用程序开发人员,非常希望导入部件的图形表示与它们在创作软件中的外观尽可能接近。外观可以在每个B-Rep面的基础上指定,而且,通过装配层次结构的特定路径可以在视觉外观上赋予父/子覆盖。HOOPS ExchangeHOOPS Exchange可捕获有关来自各…...
[Ubuntu 22.04] 安装docker,并设置镜像加速
for pkg in docker.io docker-doc docker-compose podman-docker containerd runc; do sudo apt-get remove $pkg; doneapt install -y curl vim wget gnupg dpkg apt-transport-https lsb-release ca-certificates# 添加Docker的GPG公钥和apt源 #curl -sSL https://download.d…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...