【一文搞懂】—带霍尔编码器的直流有刷减速电机
文章目录
- 一、直流有刷电机
- 二、减速比
- 三、霍尔编码器
- 3.1 霍尔编码器
- 3.2 霍尔编码器测速原理
- 四、测速程序设计
- 4.1 跳变沿检测
- 4.2 计算转速
一、直流有刷电机
宏观上说直流有刷电机由固定部分(定子)和旋转部分(转子)组成。在定子上装有两个励磁的磁极N和S。在其转子部分有电枢铁芯。电枢铁芯上有绕组线圈,线圈的首尾接有两个圆弧形铜片,称为换向片。两个换向片之间互相绝缘。换向片固定在转轴上,换向片与转轴之间也相互绝缘。换向器上固定着一对电刷,电刷与换向器互相接触。绕组线圈通过换向片和电刷与电源连接。下面是直流有刷电机的结构图。

电机是怎么转起来的呢?
这时候就要搬出我们高中所学的物理知识了,因为电机能转起来,离不开一个力——安培力。
首先复习一下安培力,主要是知道什么是安培力以及如何判断安培力的方向。通电导线在磁场中受到的作用力叫做安培力。判断安培力的方向我们用到左右定则,什么是左手定则?伸开左手,使拇指与其他四指垂直且在一个平面内,让磁感线从手心流入,四指指向电流方向,大拇指指向的就是安培力方向(即导体受力方向)。

有的资料上可能说是洛伦兹力,磁场对运动电荷的作用力称为洛伦兹力,安培力是洛伦兹力的宏观表现。
了解了上面的知识,我们开始正式探讨电机是怎么转起来的。
看上面的电机结构图,如果外部电源上正下负接到电刷两边,那么绕组线圈中的电流方向为顺时针,我们来对绕组线圈做一个受力分析。

电流方向垂直于磁场方向的部分是不受安培力作用的,也就是上图的蓝色部分。上图的红色部分中我们用左手定则分析一下受力。根据左手定则,上半部分受到垂直屏幕向内的安培力。下半部分受到垂直屏幕向外的安培力。上下两部分受力相反,这时电机就转起来了。同理,如果改变外部电源的接入方向,改成上负下正,上下两部分受力依旧相反,电机依旧可以转动,只不过转动方向相反。
至此,我们了解了直流有刷电机的转动原理以及如何控制正反转。
二、减速比
首先回答一个问题,为什么要有减速电机?
用简单几个字总结一下,为什么会有减速电机?目的是降低转速,增加扭矩。至于到底是怎么降低转速,增加扭矩,我们继续往后看。
什么是减速比?
用到减速电机我们难免会碰到一个概念——减速比。那么什么叫减速比?首先我们先看一下减速电机内部的结构。

减速电机内部有两个齿轮,一个是转自连接轴上的齿轮,一个是输出主轴上的齿轮。转子转动N圈,主轴转动一圈,这就实现了降低转速。比如我们常见的1:30减速比的减速电机,就是转子转动30圈,主轴转动一圈。如此一来,就实现了降低转速,增加扭矩的目的。减速比就是小齿轮数比大齿轮数的比值。
扭矩实际可以理解为电机转动的力量。如果我们不使用减速电机,拿一个小马达,我们会发现它转的很快,但是很容易用手捏住制动,力量很小。但是如果是减速电机,我们发现转速比较慢,但是我们需要用比制动小马达更大的力来制动。减速比越大,电机转动的力越大。
举一个更加常见的例子,比如我们的山地车。我们上坡时可以调节变速器,让我们用很轻松的力就能上坡,实际就是上面的原理,我们蹬好多圈,车轮才能转一圈,但是我们用的力小了,如果把我们和变速器看作一个电机,实际也就是扭矩大了。
三、霍尔编码器
3.1 霍尔编码器
什么是编码器?
编码器是把角位移或直线位移转换成电信号的一种装置。
编码器按照工作原理,可以分为增量式编码器和绝对式编码器,绝对式编码器的每一个位置对应一个确定的数字码(二进制数)。增量式编码器就是每转过单位的角度就发出一个脉冲信号。
从编码器检测原理上来分,还可以分为光学式、磁式、感应式、电容式。我们常见的是光电编码器(光学式)和我们要介绍的主角霍尔编码器(磁式)。一般来说光电编码器是霍尔编码器精度的几十倍。
编码器的作用。
了解了什么是编码器,那么我们用编码器有什么实际作用呢?通常我们会使用编码器来检测电机的转速和旋转方向。那我们常用的控制算法PID算法来说,PID算法是为了实现闭环控制,要想实现闭环控制,就需要有一个反馈。我们的编码器测得的转速就可以作为反馈,搭配PID算法,实现转速的闭环控制。
霍尔编码器的工作原理。
其实从上面的介绍就能大概了解到编码器的工作原理。我们这次主要介绍对象是霍尔编码器。霍尔编码器由码盘和霍尔元件组成。霍尔码盘与电机主轴同轴,码盘上等分的分布有多个磁极,电机转动时,霍尔元件会输出若干个脉冲信号,我们正是利用这些脉冲信号实现电机的测速和电机转向的判断。
霍尔编码器的线数。
什么是霍尔编码器的线数?转动一圈我们会产生几个脉冲,取决于编码器的线数。比如我们的霍尔编码器线数为13。那么霍尔编码器的码盘旋转一圈,会产生13个脉冲。
3.2 霍尔编码器测速原理
我们正是通过检测霍尔编码器输出的脉冲信号来测速。通常会有三相输出,A、B和Z。A和B的输出是正交的。Z是用来标记旋转一周的起始位置,我们通常不使用。

如何判断电机转向?
我们通过A相出现脉冲时检测B相电平来判断电机旋转方向。
- A检测到上升沿脉冲时,B为低电平,正转;
- A检测到上升沿脉冲时,B为高电平,反转;
如何判断电机转速?
我们通过检测单位时间内产生的脉冲数来确定电机转速。为什么可以这么做?因为电机转动一圈产生的脉冲数是确定的。比如我们有一个减速比为1:30的减速电机,霍尔编码器的线数为13。那么霍尔码盘旋转一圈,产生13个脉冲,霍尔码盘旋转30圈,电机主轴旋转一圈。综上所述,电机主轴旋转一圈会产生13 * 30 = 390个脉冲。注意,这里是只检测A相的上升沿脉冲,电机旋转一圈有390个脉冲。
有的小伙伴可能会疑问,是转一圈A和B一共产生390个脉冲,还是A和B都产生390个脉冲?答案是后者。
接下来我们只需要检测单位时间内A相或者B相输出的脉冲数,就可以计算电机转速了。
四倍频
什么是四倍频?由上面的介绍可知,霍尔编码器输出有A相和B相两条线。我们如果只用A相,检测高电平脉冲数,那么就是上面介绍的那种。如果我们A相和B相都检测,而且不止检测上升沿脉冲,也检测下降沿脉冲,那么此时霍尔码盘旋转一圈会产生四倍于之前的脉冲数。这就是所谓的四倍频。利用四倍频可以提高检测精度。
四、测速程序设计
上面介绍了这么多理论知识,下面我们动手来实现一下利用霍尔编码器,用一个1:30减速比的减速电机,来实现测速。
4.1 跳变沿检测
检测跳变沿可以用两种方法,一种是使用外部中断,另一种是使用定时器的输入捕获功能。这里使用的是外部中断,只检测A相输出的上升沿,因此只需要配置一个引脚的外部中断,来检测上升沿并在中断中进行计数即可。外部中断初始化函数与中断服务函数如下
/**==============================================================================*函数名称:Exit_Init*函数功能:初始化外部中断*输入参数:无*返回值:无*备 注:无*==============================================================================*/
void Exit_Init (void)
{// 定义结构体NVIC_InitTypeDef NVIC_InitStructure;EXTI_InitTypeDef EXTI_InitStructure;GPIO_InitTypeDef GPIO_InitStructure;// 开启时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOE,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE); // 开启AFIO时钟GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0); //选择GPIO管脚用作外部中断线路// 配置GPIO结构体GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; // 下拉输入GPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_SetBits(GPIOB,GPIO_Pin_0);//EXTI0 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; //EXTI0中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; //抢占优先级NVIC_InitStructure.NVIC_IRQChannelSubPriority =3; //子优先级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器EXTI_InitStructure.EXTI_Line=EXTI_Line0; // EXIT0EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt; // 中断EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Rising; // 上升沿触发EXTI_InitStructure.EXTI_LineCmd=ENABLE; // 使能EXTI_Init(&EXTI_InitStructure);
}
/**==============================================================================*函数名称:EXTI0_IRQHandler*函数功能:外部中断0中断服务函数*输入参数:无*返回值:无*备 注:无*==============================================================================*/
u32 gCunt = 0; // A相上升沿计数变量void EXTI0_IRQHandler(void)
{// 如果EXIT0中断标志位被置1if(EXTI_GetITStatus (EXTI_Line0)==1){gCunt = gCunt + 1;}EXTI_ClearITPendingBit (EXTI_Line0); // 清除中断标志位
}
4.2 计算转速
知道了怎么检测跳变沿并计数,我们就可以进行下一步,单位时间内读取跳变沿计数值。我们初始化一个定时器来进行时间控制。配置每一秒进入一次中断,读取一次跳变沿计数值,然后计算转速。转速的单位是RPM,也就是转每分。我们用一秒的脉冲计数乘以60,认为是一分钟的脉冲数,以此来计算电机转速。定时器配置函数以及中断服务函数如下
/**==============================================================================*函数名称:TIM2_Iint*函数功能:初始化定时器2*输入参数:per:自动重装载值;psc:预分频系数*返回值:无*备 注:无*==============================================================================*/
void TIM3_Iint (u16 per,u16 psc)
{// 结构体定义TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); // 使能TIM2时钟TIM_TimeBaseInitStructure.TIM_Period = per; // 自动装载值TIM_TimeBaseInitStructure.TIM_Prescaler = psc; // 分频系数TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 不分频TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; // 设置向上计数模式TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE); // 开启定时器中断TIM_ClearITPendingBit(TIM3,TIM_IT_Update); // 使能更新中断NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; // 定时器中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3; // 抢占优先级NVIC_InitStructure.NVIC_IRQChannelSubPriority =4; // 子优先级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // IRQ通道使能NVIC_Init(&NVIC_InitStructure); TIM_Cmd(TIM3,ENABLE); // 使能定时器
}// TIM3中断服务函数
// 1s进入一次
u32 gSpeed = 0; // 转速void TIM3_IRQHandler(void) // TIM3中断
{if(TIM_GetITStatus(TIM3,TIM_IT_Update)){gSpeed = (gCunt * 60) / (30 * 13);printf ("Speed = %d = RPM\r\n",gSpeed);gCunt = 0; // 清零上升沿计数变量}TIM_ClearITPendingBit(TIM3,TIM_IT_Update);
}
该文章会绑定一个资源,资源是通过串口输入占空比,范围是0~999,然后串口会打印电机转速。电机驱动模块使用的是TB6612。关于TB6612,可以查看博主STM32外设系列专栏。
相关文章:
【一文搞懂】—带霍尔编码器的直流有刷减速电机
文章目录 一、直流有刷电机二、减速比三、霍尔编码器3.1 霍尔编码器3.2 霍尔编码器测速原理 四、测速程序设计4.1 跳变沿检测4.2 计算转速 一、直流有刷电机 宏观上说直流有刷电机由固定部分(定子)和旋转部分(转子)组成。在定子上…...
滴水逆向三期笔记与作业——02C语言——05 正向基础/05 循环语句
目录 一、缓冲区溢出的HelloWorld二、永不停止的HelloWorld三、基础知识3.1 变量的声明3.2 类型转换(一般用于小转大)3.3 表达式3.4 语句和程序块3.5 参数与返回值3.6 关系运算符3.7 逻辑运算符:&& || !3.8 单目运算符3.9 三目运算符…...
Python抓取分享页面的源代码示例
本文章是关于利用Python方法来抓取某网站分享页面中的源码方法示例。需要大家注意的是Python抓取分享页面的源代码示例,是要在运行时导入BeautifulSoup.py文件后才可以使用。 Python抓取分享页面的源代码示例,需要用到python urllib2模块方法࿰…...
linux安装nginx遇到的报错
1、Linux如何修改只读文件(以设置自动连网为例) vim /etc/sysconfig/network-scripts/ifcfg-ens33 然后提示 E45:已设定选项“readonly”(请加!强制执行) 如果需要强制修改,可以使用࿰…...
一起学SF框架系列5.8-spring-Beans-Bean注解解析3-解析配置component-scan
本文主要讲述Spring是如何解析“context:component-scan”元素,扫描加载目录下的BeanDefinition。 解析内容 1、解析的元素如下: <!-- 注解模式:配置bean扫描路径(注:自动包含子路径) --><conte…...
【LeetCode热题100】打卡第42天:滑动窗口最大值搜索二维矩阵II
文章目录 【LeetCode热题100】打卡第42天:滑动窗口最大值&搜索二维矩阵II⛅前言 滑动窗口最大值🔒题目🔑题解 搜索二维矩阵II🔒题目🔑题解 【LeetCode热题100】打卡第42天:滑动窗口最大值&搜索二维…...
[uni-app] 微信小程序 - 组件找不到/导入报错 (分包问题导致)
文章目录 问题表现问题原因 问题表现 切换了个路径下的组件, 导入失败, 尝试了清缓存\重启\删项目等一些列操作均无效 上面两个路径中, 都存在一模一样的videItem.vue Main路径是可以导入的 Main路径是无法导入的 问题原因 后来发现, 是 分包的问题导致. 我们先来假设一个场…...
从零构建医疗领域知识图谱的KBQA问答系统:其中7类实体,约3.7万实体,21万实体关系。
项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实…...
编程小白的自学笔记十二(python爬虫入门四Selenium的使用实例二)
系列文章目录 编程小白的自学笔记十一(python爬虫入门三Selenium的使用实例详解) 编程小白的自学笔记十(python爬虫入门二实例代码详解) 编程小白的自学笔记九(python爬虫入门代码详解) 目录 系列文章…...
技术笔记2023076 rBoot学习7
技术笔记2023076 rBoot学习7 继续之前的学习。 代码分析:函数find_image() // prevent this function being placed inline with main // to keep mains stack size as small as possible // dont mark as static or itll be optimised out when // using the ass…...
收藏这6个抠图工具,一键抠图不用愁!
在图片编辑工作中,抠图是设计师常用的操作。随着设计工具的不断增加,抠图操作摆脱了过去繁琐的操作步骤,几乎可以一键完成。今天本文将为大家介绍6个好用的抠图工具,一起来看看吧! 1、皮卡智能抠图 皮卡智能抠图是一…...
四,Eureka 第四章
2.1.3 增加依赖 <!--添加依赖--><dependencies><!--Eureka Server--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId></dependency>&l…...
k8s常见的资源对象使用
目录 一、kubernetes内置资源对象 1.1、kubernetes内置资源对象介绍 1.2、kubernetes资源对象操作命令 二、job与cronjob计划任务 2.1、job计划任务 2.2、cronjob计划任务 三、RC/RS副本控制器 3.1、RC副本控制器 3.2、RS副本控制器 3.3、RS更新pod 四、Deployment副…...
JavaScript 简单实现观察者模式和发布订阅模式
JavaScript 简单实现观察者模式和发布订阅模式 1. 观察者模式1.1 如何理解1.2 代码实现 2. 发布订阅模式2.1 如何理解2.2 代码实现 1. 观察者模式 1.1 如何理解 概念:观察者模式定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时ÿ…...
高通WLAN框架学习(37)-- TDLS(Tunneled Direct Link Setup)通道直接链路建立
一 TDLS概述 隧道直连设置(TDLS)基于IEEE 802.11z-2010IEEE标准802.11z标准(无线局域网介质访问控制(MAC)和物理层(PHY)规范。 TDLS允许与同一AP关联的设备之间建立直接链路。Wi-Fi Direct允许设备之间直接连接,而不需要AP。Wi-Fi联盟认证可用于IEEE 802.11a和802.11g设备的T…...
高算力AI模组前沿应用:基于ARM架构的SoC阵列式服务器
本期我们带来高算力AI模组前沿应用,基于ARM架构的SoC阵列式服务器相关内容。澎湃算力、创新架构、异构计算,有望成为未来信息化社会的智能算力底座。 ▌性能优势AI驱动,ARM架构服务器加速渗透 一直以来,基于ARM架构的各类处理器…...
老年公寓人员定位管理系统:提升安全与关怀的智能解决方案
老年公寓作为提供安全居住环境和关怀服务的重要场所,面临着人员管理和安全控制的挑战。为了解决这些问题,老年公寓人员定位管理系统应运而生。基于为提供全面的安全管理和个性化关怀服务,华安联大便通过老年公寓人员定位管理系统的技术原理、…...
每日一题之两个字符串的删除操作
题目链接 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 **相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1: 输入: word1 "sea", word2 "eat" 输出: 2 解释: 第一步将 "sea" 变…...
nacos安装与基础配置
源码 https://github.com/alibaba/nacos https://gitee.com/mirrors/Nacos 编译 git clone https://github.com/alibaba/nacos.git cd nacos/ mvn -Prelease-nacos -Dmaven.test.skiptrue clean install -U ls -al distribution/target/// change the $version to your ac…...
GitHub Copilot:让开发编程变得像说话一样简单
引用: 人类天生就梦想、创造、创新。但今天,我们花太多时间被繁重的工作所消耗,花在消耗我们时间、创造力和精力的任务上。为了重新连接我们工作的灵魂,我们不仅需要一种更好的方式来做同样的事情,更需要一种全新的工…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
