【AI底层逻辑】——篇章5(下):机器学习算法之聚类降维时间序列
续上:
目录
4、聚类
5、降维
6、时间序列
三、无完美算法
往期精彩:
4、聚类
聚类即把相似的东西归在一起,与分类不同的是,聚类要处理的是没有标签的数据集,它根据样本数据的分布特性自动进行归类。
人在认知是事物时倾向于简化,虽然世界上不存在完全相同的个体,但是却不影响对它们进行归类,大脑用抽取共性的方式使得我们快速记忆不同的事物。
聚类是典型的无监督学习算法,基本思路都是利用每个数据样本所表示的向量之间的“距离”或密集程度来进行归类。这与分类算法中的K邻近算法思路相近。典型的“计算距离”的聚类算法有K均值(K-Means)算法,具体步骤如下:
1、任意取k个数据点作为初始中心;
2、依次计算其他点到这些中心的距离;
3、将每个点归类到与它距离最近的中心,每个类别下点下的集合是一个类簇;
4、重新计算各类簇的中心位置(即类簇中所有点的中心——质心;
5、重复上述2、3、4步骤,直到所有数据点都被归类,且类簇的中心位置没有明显变化;
此时可认为聚类任务完成,其基本思路就是不断拉拢身边距离相近的样本数据,将它们归为同类。
不足:①需要提前指定类簇数量,实际应用时很难知道数据是什么分布,甚至不知道分为几类;②要提前定义初始中心,这个选择通常是随机的(初始中心不同最终结果也可能不同,如果初始中心都在同一类别,会对结果影响很大);③算法需要重复迭代地计算类簇中心,计算开销大;④常用欧式距离划分类簇,但是隐含一个前提假设——数据各个维度变量具有相同的重要性。
“计算距离”只是聚类解题的一种思路,有些情况并不一定数据点之间距离越近就属于一类。因为数据在空间中的分布可能是任意尺寸、任意形状,如曲面。此时可考虑用“计算密度”(即根据数据之间的疏密程度)的方法:
聚类算法应用场景:
①图像分割和特征提取,找到图像中相似的视觉区域;
②从海量论文中找到相似内容和观点的论文;
③异常点检测,如信用卡防欺诈、肿瘤病例筛查、刑侦破案等。
5、降维
大量的数据增加了数据采集和分析的难度,由于许多变量之间存在关联(和、差、积、商或其他运算关系),变量之间的关系不能孤立看待,盲目减少可能损失信息。所以需要一种合理的数据处理方法,在减少变量数量的同时,尽量降低原变量中包含信息的损失程度,如果变量之间存在关联,那么使用更少的综合变量来代替原变量,减少数据维度,理论上可行的——降维。
就如在特征提取时不必提取所有特征,精准抓住足够解决问题的特征即可,这是一个特征选择过程,主成分分析法可帮助我们快速完成特征筛选过程:
主成分分析法(Principal Component Analysis,PCA)在文件压缩、声音降噪等领域有着广泛应用,它是一种把多个变量简化为少数几个主成分的统计方法,这些主成分能反映原变量的绝大部分信息,通常表示为原始变量的线性组合。
PCA数学原理:对数据进行正交线性变换,把原始数据变换到一个新的坐标系中,从而找到新坐标系的主成分,求解过程需要用到矩阵运算和特征分解,关键步骤是如何寻找最大方差的方向。
原变量之间可组成不同的线性组合,PCA尝试找到最佳的特征组合,PCA有两个目标:①尽可能找到最小的特征组合,即去除冗余的特征;②尽可能体现特征的差异,即让不同特征能明显区分——举例来说,随意挑选两个特征构建它们的散点图,如下图所示,图中每个点有两个特征,分别对应X轴和Y轴,在图中画一条直线,将所有点投影到这条线上就可以构建出一个新的特征(新的X轴)——它可以通过两个旧特征的线性组合来表示。
不仅如此,PCA还会根据两种不同的“最佳”标准找到最合适的新坐标系:①让数据投影在新坐标系上的点(新特征)尽量分散,即方差最大化;②让新特征与原来的两个特征的距离偏差最小,即误差最小化。当同时满足上述两点时,新的特征组合就找到了。
PCA去除了冗余信息,保留了最有可能重建原有特征的新特征,这些新特征更有区分度,数学表征上方差更大。所以PCA不仅可以实现降维,也可以作为提取有效特征(特征工程)的一种方法,在分析数据时尤为有用。
6、时间序列
时间序列是一组按照时间顺序记录的有序数据,对时间序列进行观察、研究、找寻变化规律,预测未来趋势,即为时间序列分析。时间序列属于统计学的一个分支,遵循统计学基本原理——利用观察数据估计总体的性质。但时间序列也有其特殊性,由于时间不可回退,也不可重复,使得时间序列分析拥有一套自成体系的分析方法。
常用的时间序列分析方法大致有两种!
第一种采用趋势拟合的方法,比如提取时间序列的各种趋势规律(如ARIMA(差分整合自回归移动平均)算法),或用各种不同的频率和幅度的波形叠加组合(如傅里叶变换、小波分析),还有前面的回归算法。第二种采用特征提取的方法,比如使用统计方法、专家经验提取时间序列特征,将这些特征、原始时序数据、标签等输入人工神经网络进行训练,或使用具有上下文记忆功能的人工神经网络算法。并没有特定分析方案,需要根据实际的数据特点挑选算法,也可以多个算法结合使用。
下面详细展开一种常用方法,这种方法考察时间序列数据的趋势性、周期性、季节性以及剩余不规则变化(随机变动,也叫残差)。
①趋势性可使用线性回归、指数曲线、多项式函数来描述!
②周期性是一种循环的变动,取决于一个系统内部影响因素的周期变化规律,表现为一段时间内数据呈现涨落相同、峰谷交替的循环变动!
③如果一些波动受季节影响,说它是一种季节性变化。许多销售数据或经济活动会收到季节的影响!
④剔除时间序列的趋势性、周期性、季节性,剩余的波动部分通常被归为不规则变化,它包含突然性变动和随机性变动。随机性变动是数据以随机形式呈现出的变动(通常是无法解释的噪声);突然性变动可能由突发事件导致,表现为一些异常值。
模型构建:趋势性、周期性、季节性都可以用时间序列的相关算法构建具体的数学模型,这些模型叠加组合后的总体结果。叠加效果数学上通常有两种处理方法,①各个影响因素相互累加,如信息熵的计算,一个时间的信息熵是每个子事件信息熵之和——加法模型假定多个影响因素之间相互独立,互不影响;②各个影响因素的结果相乘,如概率的计算,事件发生的概率是每个子事件发生的概率之积——乘法模型假定各个因素之间会相互影响。乘法模型较为常用,加法和乘法也可混合使用。
注:时间序列模型在解决实际问题时,序列必须满足特定的数据分布,或者具有平稳的时间序列特性,比如在剔除趋势数据后,时间序列不能与时间有依赖关系,数据波动的频率和幅度不能随时间变化等。如果不能满足检验要求,则无法通过模型求解。
三、无完美算法
没有一个算法可以在任何领域总是表现最佳,不存在普遍适用的最优算法。使用任何算法都必须要有与待解决问题相关的假设,一旦脱离具体问题,空谈算法毫无意义!
一个好的算法不在于它足够复杂,而在于它的逻辑简洁、清晰、设计优雅!你觉得算法复杂是因为所要解决的场景复杂!——算法是简洁和高度抽象的表达,场景才是复杂的!
往期精彩:
【AI底层逻辑】——篇章3(下):信息交换&信息加密解密&信息中的噪声
【AI底层逻辑】——篇章3(上):数据、信息与知识&香农信息论&信息熵
【机器学习】——续上:卷积神经网络(CNN)与参数训练
【AI底层逻辑】——篇章1&2:统计学与概率论&数据“陷阱”
【AI底层逻辑】——篇章5(上):机器学习算法之回归&分类
相关文章:

【AI底层逻辑】——篇章5(下):机器学习算法之聚类降维时间序列
续上: 目录 4、聚类 5、降维 6、时间序列 三、无完美算法 往期精彩: 4、聚类 聚类即把相似的东西归在一起,与分类不同的是,聚类要处理的是没有标签的数据集,它根据样本数据的分布特性自动进行归类。 人在认知是…...

P1980 [NOIP2013 普及组] 计数问题
[NOIP2013 普及组] 计数问题 题目描述 试计算在区间 1 1 1 到 n n n 的所有整数中,数字 x x x( 0 ≤ x ≤ 9 0\le x\le9 0≤x≤9)共出现了多少次?例如,在 1 1 1 到 11 11 11 中,即在 1 , 2 , 3 , 4…...

需求管理全过程流程图及各阶段核心关注点详解
分析报告指出,多达76%的项目失败是因为差劲的需求管理,这个是项目失败的最主要原因,比落后的技术、进度失控或者混乱的变更管理还要关键。很多项目往往在开始的时候已经决定了失败,谜底就在谜面上,开始就注定的失败&am…...

Android开源 自定义emoji键盘,EmojiPack v2.1版本
目录 一,简介 二、安装 添加jitpack 仓库 添加依赖: 混淆规则: 三、使用 1、一次性配置emoji显示处理 二、emoji的自定义键盘的使用 一,简介 EmojiPack当前已提供emoji的显示和emoji的选择自定义键盘,在emoji显示这一方面࿰…...

SOLIDWORKS软件的优势分析 硕迪科技
在现代的机械设计领域,SOLIDWORKS是一款备受青睐三维设计软件,它具备强大的建模和设计功能,在全球范围内广泛应用于机械设计和工程领域,为用户提供了全面的工程解决方案。本文就SOLIDWORKS的优势进行详细分析。 1、易于学习和使用…...

Android性能优化之游戏的Theme背景图
近期,对游戏的内存优化,通过内存快照发现,某个Activity的theme背景图 占用3M 多。考虑着手对齐进行优化。 问题 查看游戏中的内存快照,发现有一个图片bitmap 占用3M 多,设置在Activity的背景中: 查看Phon…...

网络安全(黑客)系统自学,成为一名白帽黑客
前言 黑客技能是一项非常复杂和专业的技能,需要广泛的计算机知识和网络安全知识。你可以参考下面一些学习步骤,系统自学网络安全。 在学习之前,要给自己定一个目标或者思考一下要达到一个什么样的水平,是学完找工作(…...

lua学习-2 常见运算符
文章目录 赋值运算符普通赋值多重赋值交换赋值 算数运算符常见符号标识 关系运算符常见符号标识TIP 逻辑运算符常见符号标识模拟三目运算 赋值运算符 普通赋值 a 1b "123"c truec "true"多重赋值 a,b 1,2 a,b,c 2,"ss" -- c的值为nil交换赋…...

【图像处理】使用 OpenCV 将您的照片变成卡通
图像到卡通 一、说明 在当今世界,我们被图像和视频所包围。从社交媒体到广告,图像已成为一种强大的交流媒介。但是你有没有想过,如果你能把你的照片变成卡通会发生什么?想象一下,为您最喜欢的照片创建动画版本…...

暖手宝UL认证 亚马逊UL测试报告 UL499测试项目
UL499测试内容:1、 漏电流测试 2、 输入测试 3、 潮态下漏电流测试4、正常温升测试 5、 耐高压测试 6、 稳定性测试7、异常测试(DRY)8、 异常测试 9、 静压及强度测试10、 烧熔断器测试、 电源线拉力测试11、 电源线推力测试12、 塑件变…...

ES6模块化与异步编程高级用法
1. ES6模块化 1.1 回顾:node.js 中如何实现模块化 node.js 遵循了 CommonJS 的模块化规范。其中: 导入其它模块使用 require() 方法模块对外共享成员使用 module.exports 对象 模块化的好处: 大家都遵守同样的模块化规范写代码࿰…...

spring-cloud-starter-gateway 4.0.6负载均衡失败
spring:application:name: gatewaycloud:gateway:routes:- id: memberuri: lb://memberpredicates:- Path/member/**需要引入下面负载均衡依赖否则503找不到服务 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-s…...

Tomcat注册为Windows服务
要将Tomcat注册为Windows服务,可以使用Tomcat提供的实用工具service.bat。以下是注册和配置Tomcat作为Windows服务的步骤: 打开命令提示符(Command Prompt)或 PowerShell,然后进入Tomcat安装目录的"bin"文件…...

【Maven】Maven 中 pom.xml 文件
文章目录 前言什么是 pom?pom配置一览 1. dependencies2.scope3.properties4.plugin参考 前言 Maven 是一个项目管理工具,可以对 Java 项目进行构建和管理依赖。 本文,我们认识下 pom.xml 文件。POM(Project Object Model, 项目…...

2、Linux驱动开发:模块_引用符号
目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…...

Python web实战 | Docker+Nginx部署python Django Web项目详细步骤【干货】
概要 在这篇文章中,我将介绍如何使用 Docker 和 Nginx 部署 Django Web 项目。一步步讲解如何构建 Docker 镜像、如何编写 Docker Compose 文件和如何配置 Nginx。 1. Docker 构建 Django Web 项目 1.1 配置 Django 项目 在开始之前,我们需要有一个 D…...

【uniapp】实现买定离手小游戏
前言 最近玩了一个小游戏,感觉挺有意思,打算放进我的小程序【自动化小助手】里面,“三张押一张,专押花姑娘!”,从三张卡牌,挑选一张,中奖后将奖励进行发放,并且创建下一…...

【vim 学习系列文章 3 - vim 选中、删除、复制、修改引号或括号内的内容】
文章目录 vim 快捷命令vim 操作符vim 文本对象vim 动作 上篇文章: vim 学习系列文章 2 - vim 常用插件配置 vim 快捷命令 Vim 有一个模块化的结构,允许你使用各种命令的组合操作。大多数命令有两个、三个或四个部分。三部分结构的一个版本是这样的:操作…...

webpack联邦模块介绍及在dumi中使用问题整理
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、ModuleFederationPlugin参数含义?二、如何在dumi中使用及问题整理1. 如何在dumi中使用(这个配置是好使的)2.相关问题整理2.1 问题12.2 问题2 总…...

记录一下Kotlin: Module was compiled with an incompatible version of Kotlin.的问题
我遇到的整个报错是这样的: Error:Kotlin: Module was compiled with an incompatible version of Kotlin. The binary version of its metadata is 1.7.1, expected version is 1.1.16. 大概意思就是不匹配,但是我这是个不太能随便改代码的项目&#x…...

html中使用Vue+element UI动态创建表单数据不显示问题
直接上代码:html代码如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content&…...

CentOS下 Docker、Docker Compose 的安装教程
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 Docker Compose是用于定义…...

[OnWork.Tools]系列 02-安装
下载地址 百度网盘 历史版本连接各种版本都有,请下载版本号最高的版本 链接:https://pan.baidu.com/s/1aOT0oUhiRO_L8sBCGomXdQ?pwdn159提取码:n159 个人链接 http://on8.top:5000/share.cgi?ssiddb2012fa6b224cd1b7f87ff5f5214910 软件安装 双…...

【外键合并python】
外键合并(Foreign Key Merge) 外键合并是指在数据库或者数据表中,通过共同的外键将多个数据表合并在一起的操作。在 Excel 表格中,我们可以使用外键来将多个表格合并,类似于数据库中的关联操作。 步骤一:…...

Mongodb SQL 到聚合映射快速参考
SQL 映射 聚合管道允许MongoDB 提供原生聚合功能,对应于 SQL 中许多常见的数据聚合操作。比如:GROUP BY、COUNT()、UNION ALL 测试数据 For MySQL rootlocalhost 14:40:40 [test]> select * from orders; -------------------------------------…...

腾讯云标准型S6/SA3/SR1/S5/SA2服务器CPU处理器大全
腾讯云服务器CVM标准型CPU处理器大全,包括标准型S6、SA3、SR1、S5、S5se、SA2、S4、SN3ne、S3、SA1、S2ne实例CPU处理器型号大全,标准型S6云服务器CPU采用Intel Ice Lake(2.7GHz/3.3GHz),标准型S5采用Intel Xeon Cascade Lake 8255C/Intel Xe…...

idea 关于高亮显示与选中字符串相同的内容
dea 关于高亮显示与选中字符串相同的内容,本文作为个人备忘的同时也希望可以作为大家的参考。 依次修改File-settings-Editor-Color Scheme-General菜单下的Code-Identifier under caret和Identifier under caret(write)的Backgroud色值,可以参考下图。…...

【重点:单例模式】特殊类设计
请设计一个类,只能在堆上创建对象 方式如下: 将构造函数设置为私有,防止外部直接调用构造函数在栈上创建对象。向外部提供一个获取对象的static接口,该接口在堆上创建一个对象并返回。将拷贝构造函数设置为私有,并且…...

智能家居是否可与ChatGPT深度融合?
ChatGPT自2022年面世以来,已为亿万网民提供智能问答服务。然而我们是否曾想到,这一人工智能驱动的聊天机器人,是否可为智能家居赋能? 要实现ChatGPT与智能家居设备之间的无缝对话,单单依靠一台终端是远远不够的。ChatGPT必须…...

LED芯片 VAS1260IB05E 带内部开关LED驱动器 汽车硬灯带灯条解决方案
VAS1260IB05E深力科LED芯片是一种连续模式电感降压转换器,设计用于从高于LED电压的电压源高效驱动单个或多个串联连接的LED。该设备在5V至60V之间的输入电源下工作,并提供高达1.2A的外部可调输出电流。包括输出开关和高侧输出电流感测电路,该…...