PyTorch中级教程:深入理解自动求导和优化
在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。
一、自动求导
在PyTorch中,所有神经网络的核心是autograd
包。先简单理解这个包,然后我们会去训练我们的第一个神经网络。
autograd
包提供了所有张量上的自动求导操作。它是一个在运行时定义的框架,这意味着你的反向传播是由你的代码运行方式决定的,因此每次迭代可以不同。
让我们通过一些简单的例子来更好地理解这个概念:
import torch# 创建一个张量并设置requires_grad=True来追踪与它相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)# 对张量进行操作
y = x + 2
print(y)# 因为y是操作的结果,所以它有grad_fn属性
print(y.grad_fn)# 对y进行更多操作
z = y * y * 3
out = z.mean()print(z, out)
二、梯度
我们可以通过调用.backward()
来进行反向传播,计算梯度:
out.backward()# 输出梯度 d(out)/dx
print(x.grad)
三、训练模型
在定义神经网络后,我们可以将数据输入到网络中,并使用反向传播计算梯度。然后使用优化器更新网络的权重:
import torch.optim as optim# 创建优化器(随机梯度下降)
optimizer = optim.SGD(net.parameters(), lr=0.01)# 在训练循环中:
optimizer.zero_grad() # 清零梯度缓存
output = net(input) # 输入数据并得到输出
loss = criterion(output, target) # 计算损失函数
loss.backward() # 反向传播
optimizer.step() # 更新权重
到此,你已经了解了如何在PyTorch中使用自动求导和优化器进行模型训练。在实际使用中,你会发现这两个特性极大地简化了训练过程,使得PyTorch在深度学习框架中备受青睐。
相关文章:

PyTorch中级教程:深入理解自动求导和优化
在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。 …...

ES6基础知识六:你是怎么理解ES6中 Promise的?使用场景?
一、介绍 Promise,译为承诺,是异步编程的一种解决方案,比传统的解决方案(回调函数)更加合理和更加强大 在以往我们如果处理多层异步操作,我们往往会像下面那样编写我们的代码 doSomething(function(resu…...

数据库CAST()函数,格式(CAST AS decimal)
语法: CAST (expression AS data_type) 参数说明: expression:任何有效的SQServer表达式。 AS:用于分隔两个参数,在AS之前的是要处理的数据,在AS之后是要转换的数据类型。 data_type:目标系统…...

LRU 缓存结构
文章目录 LRU实现 LRU 优先去除最久没有访问到的数据。 实现 通过组合哈希表(Hash Table)和双向链表(Doubly Linked List)实现 LRU 缓存。并且以 O(1) 的时间复杂度执行 get 和 put 操作核心是对节点的新增、访问都会让节点移动…...

DAY1,Qt [ 手动实现登录框(信息调试类,按钮类,行编辑器类,标签类的使用)]
1.手动实现登录框; ---mychat.h---头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> //打印信息 #include <QIcon> //图标 #include <QPushButton> //按钮 #include <QLineEdit> //行编辑器类 #in…...

25.8 matlab里面的10中优化方法介绍—— 拉各朗日乘子法求最优化解(matlab程序)
1.简述 拉格朗日乘子法: 拉格朗日乘子法(Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 变量与 约束条件的最优化问题转化为具有变量的无约束优化问题求解 举个例子ÿ…...

2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) | EI Compendex, Scopus双检索
会议简介 Brief Introduction 2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) 会议时间:2023年9月22日-24日 召开地点:中国杭州 大会官网:ECNLPIR 2023-2023 Eurasian Conference on Natural Language Processing and Information Retr…...

Python - 嵌入式数据库Sqlite3的基本使用
SQLite是一种轻量级的嵌入式关系型数据库管理系统,而Python标准库中提供了与SQLite交互的模块,sqlite3。下面是一个Python 3中使用sqlite3模块的详细示例与解析。 import sqlite3 # 创建或连接数据库 conn sqlite3.connect(example.db) # 创建一个…...

VB制作网页自动填表
VB制作简单模拟器教程入门版 第一讲 如何用VB编程打开一个网页: 由于是为做模拟器做铺垫,所以就不介绍别的方法,只介绍一种最简单的用webbrowser控件实现(实际是其他的方法我还没有学会)。 下面我们就开始步入模…...

Kotlin 和 Java对比,具体代码分析
目录 一、语法比较二、案列分析 Kotlin 和 Java 都是广泛使用的编程语言,它们有一些共同点,例如都追求面向对象编程,但也有许多不同之处。下面是 Kotlin 和 Java 之间的一些比较: 一、语法比较 声明变量:Kotlin 使用 …...

目标检测之3维合成
现在有一系列的图片,图片之间可以按照z轴方向进行排列。图片经过了目标检测,输出了一系列的检测框,现在的需求是将检测框按类别进行合成,以在3维上生成检测结果。 思路:将图片按照z轴方向排列,以z轴索引作…...

【playbook】Ansible的脚本----playbook剧本
Ansible的脚本----playbook剧本 1.playbook剧本组成2.playbook剧本实战演练2.1 实战演练一:给被管理主机安装Apache服务2.2 实战演练二:使用sudo命令将远程主机的普通用户提权为root用户2.3 实战演练三:when条件判断指定的IP地址2.4 实战演练…...

PySpark基本操作:如何查看源码
方法一: from pyspark.mllib.tree import GradientBoostedTrees import inspectsource_code inspect.getsource(GradientBoostedTrees) print(source_code) 方法二: GradientBoostedTrees — PySpark 3.4.1 documentation (apache.org) 在官网中&…...

HCIP——OSPF的防环机制
OSPF的防环机制 一、域间防环二、域内防环有向图转化1、有向图的画法2、示例: 三、SPF算法 OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和…...

安全基础 --- 正则表达式
正则表达式是表达文本模式的方法 正则表达式(Regular Expression),简称为正则或Regex,是一个用来描述、匹配和操作字符串的工具。 (1)限定字符 限定字符多用于重复匹配次数 常用限定字符: 语…...

【vue】vue面试高频问题之-$nextTick的作用和使用场景
nextTick的作用和使用场景 vue中的nextTick主要用于处理数据动态变化后,DOM还未及时更新的问题,用nextTick就可以获取数据更新后最新DOM的变化 api文档 Vue.nextTick( [callback, context] ) 参数: {Function} [callback]{Object} [context]…...

MySQL学习笔记之SQL语句执行过程查看
文章目录 参数使能查看最近一条SQL执行过程查看profiling打开开后,所有SQL语句执行耗时查看某一条SQL的执行过程指定要查看的性能选项查看所有性能选项 参数使能 以select语句为例,首先打开profile参数: mysql> set profiling 1; Query…...

如何以毫秒精度,查看系统时间以及文件的创建时间
用 cmd 查看系统的时间: powershell -command "(Get-Date -UFormat %Y-%m-%d %H:%M:%S).toString() . ((Get-Date).millisecond)" 用 XYplorer 查看文件的精确创建时间(含30天试用): XYplorer - File Manager for …...

基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树
目录 1.算法理论概述 2.部分核心程序 3.算法运行软件版本 4.算法运行效果图预览 5.算法完整程序工程 1.算法理论概述 情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于…...

jMeter使用随记
参数化BodyData 先制作参数文件 再设置一个csv data set config 最后在body data里面写上参数${xxxxx}...

[语义分割] DeepLab v3(Cascaded model、ASPP model、两种ASPP对比、Multi-grid、训练细节)
Rethinking Atrous Convolution for Semantic Image Segmentation 论文地址:Rethinking Atrous Convolution for Semantic Image SegmentationPytorch 实现代码:pytorch_segmentation/deeplab_v3 这是一篇 2017 年发表在CVPR上的文章。相比 DeepLab V2 有…...

css - Media Query
使用bootstrap的grid system可以在一个较为粗糙的范围得到较好的响应性,但是通过viewport可以看到网站在具体哪个像素点处变得丑陋,再通过css media query来精细调整网页布局。 可以通过media query来提高网页移动响应能力。...

9.python设计模式【外观模式】
内容:为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一个子系统更加容易使用。 角色: 外观(facade)子类系统(subsystem classes) UML图 举…...

Webpack5 CopyPlugin的作用
在Webpack 5中,CopyPlugin是一个插件,用于将文件或目录从源位置复制到构建目录中。它的作用是帮助开发人员在构建过程中将静态文件(如图片、字体等)直接复制到输出目录,而无需经过任何处理。 CopyPlugin并不是必须的&…...

kafka服务端允许生产者发送最大消息体大小
1、kafka config服务端配置文件server.properties server.properties中加上的message.max.bytes配置,我目前设置为5242880,即5MB,可以根据实际情况增大。 message.max.bytes5242880 在生产者端配置max.request.size,这是单个消息…...

台阶型Nim游戏博弈论
台阶型Nim游戏 题目 https://www.acwing.com/problem/content/894/ 现在,有一个 n n n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i i i 级台阶上有 a i a_i ai 个石子( i ≥ 1 i \ge 1 i≥1)。 两位玩家轮流操作,每…...

NestJS 的 中间件 学习
基本概念 中间件是在路由处理程序之前调用的函数。中间件函数可以访问请求和响应对象。在程序中我们可以让多个中间件串起来一起使用,当多个中间件一起使用时我们可以使用next()调用下一个中间件。 中间件主要是可以实现如下功能: 执行任何代码更改请…...

搭建自己第一个golang程序
概念: golang 和 java有些类似,配置好环境就可以直接编写运行了;这里分两种: 一.shell模式 创建一个go类型的文件 往里面编写代码 二.开发工具模式 这里的开发工具 我选用goland package mainimport "fmt"func mai…...

Mysql加锁过程
1、背景 MySQL/InnoDB的加锁分析,一直是一个比较困难的话题。我在工作过程中,经常会有同事咨询这方面的问题。同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题。本文,准备就MySQL/InnoDB的加锁问…...

财经界杂志财经界杂志社财经界编辑部2023年第19期目录
《财经界》投稿邮箱:cnqikantg126.com(注明投稿“《财经界》”) ●崔编辑Q Q :695548262 微信号:f99832970 名刊名著_国内外名刊名著 财经名刊名著 李少鹏 ;王海蕴; 6-7 发改委专线 六方面发力 看中国经济形势,既要看准当…...