PyTorch中级教程:深入理解自动求导和优化
在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。
一、自动求导
在PyTorch中,所有神经网络的核心是autograd包。先简单理解这个包,然后我们会去训练我们的第一个神经网络。
autograd包提供了所有张量上的自动求导操作。它是一个在运行时定义的框架,这意味着你的反向传播是由你的代码运行方式决定的,因此每次迭代可以不同。
让我们通过一些简单的例子来更好地理解这个概念:
import torch# 创建一个张量并设置requires_grad=True来追踪与它相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)# 对张量进行操作
y = x + 2
print(y)# 因为y是操作的结果,所以它有grad_fn属性
print(y.grad_fn)# 对y进行更多操作
z = y * y * 3
out = z.mean()print(z, out)
二、梯度
我们可以通过调用.backward()来进行反向传播,计算梯度:
out.backward()# 输出梯度 d(out)/dx
print(x.grad)
三、训练模型
在定义神经网络后,我们可以将数据输入到网络中,并使用反向传播计算梯度。然后使用优化器更新网络的权重:
import torch.optim as optim# 创建优化器(随机梯度下降)
optimizer = optim.SGD(net.parameters(), lr=0.01)# 在训练循环中:
optimizer.zero_grad() # 清零梯度缓存
output = net(input) # 输入数据并得到输出
loss = criterion(output, target) # 计算损失函数
loss.backward() # 反向传播
optimizer.step() # 更新权重
到此,你已经了解了如何在PyTorch中使用自动求导和优化器进行模型训练。在实际使用中,你会发现这两个特性极大地简化了训练过程,使得PyTorch在深度学习框架中备受青睐。
相关文章:
PyTorch中级教程:深入理解自动求导和优化
在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。 …...
ES6基础知识六:你是怎么理解ES6中 Promise的?使用场景?
一、介绍 Promise,译为承诺,是异步编程的一种解决方案,比传统的解决方案(回调函数)更加合理和更加强大 在以往我们如果处理多层异步操作,我们往往会像下面那样编写我们的代码 doSomething(function(resu…...
数据库CAST()函数,格式(CAST AS decimal)
语法: CAST (expression AS data_type) 参数说明: expression:任何有效的SQServer表达式。 AS:用于分隔两个参数,在AS之前的是要处理的数据,在AS之后是要转换的数据类型。 data_type:目标系统…...
LRU 缓存结构
文章目录 LRU实现 LRU 优先去除最久没有访问到的数据。 实现 通过组合哈希表(Hash Table)和双向链表(Doubly Linked List)实现 LRU 缓存。并且以 O(1) 的时间复杂度执行 get 和 put 操作核心是对节点的新增、访问都会让节点移动…...
DAY1,Qt [ 手动实现登录框(信息调试类,按钮类,行编辑器类,标签类的使用)]
1.手动实现登录框; ---mychat.h---头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> //打印信息 #include <QIcon> //图标 #include <QPushButton> //按钮 #include <QLineEdit> //行编辑器类 #in…...
25.8 matlab里面的10中优化方法介绍—— 拉各朗日乘子法求最优化解(matlab程序)
1.简述 拉格朗日乘子法: 拉格朗日乘子法(Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 变量与 约束条件的最优化问题转化为具有变量的无约束优化问题求解 举个例子ÿ…...
2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) | EI Compendex, Scopus双检索
会议简介 Brief Introduction 2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) 会议时间:2023年9月22日-24日 召开地点:中国杭州 大会官网:ECNLPIR 2023-2023 Eurasian Conference on Natural Language Processing and Information Retr…...
Python - 嵌入式数据库Sqlite3的基本使用
SQLite是一种轻量级的嵌入式关系型数据库管理系统,而Python标准库中提供了与SQLite交互的模块,sqlite3。下面是一个Python 3中使用sqlite3模块的详细示例与解析。 import sqlite3 # 创建或连接数据库 conn sqlite3.connect(example.db) # 创建一个…...
VB制作网页自动填表
VB制作简单模拟器教程入门版 第一讲 如何用VB编程打开一个网页: 由于是为做模拟器做铺垫,所以就不介绍别的方法,只介绍一种最简单的用webbrowser控件实现(实际是其他的方法我还没有学会)。 下面我们就开始步入模…...
Kotlin 和 Java对比,具体代码分析
目录 一、语法比较二、案列分析 Kotlin 和 Java 都是广泛使用的编程语言,它们有一些共同点,例如都追求面向对象编程,但也有许多不同之处。下面是 Kotlin 和 Java 之间的一些比较: 一、语法比较 声明变量:Kotlin 使用 …...
目标检测之3维合成
现在有一系列的图片,图片之间可以按照z轴方向进行排列。图片经过了目标检测,输出了一系列的检测框,现在的需求是将检测框按类别进行合成,以在3维上生成检测结果。 思路:将图片按照z轴方向排列,以z轴索引作…...
【playbook】Ansible的脚本----playbook剧本
Ansible的脚本----playbook剧本 1.playbook剧本组成2.playbook剧本实战演练2.1 实战演练一:给被管理主机安装Apache服务2.2 实战演练二:使用sudo命令将远程主机的普通用户提权为root用户2.3 实战演练三:when条件判断指定的IP地址2.4 实战演练…...
PySpark基本操作:如何查看源码
方法一: from pyspark.mllib.tree import GradientBoostedTrees import inspectsource_code inspect.getsource(GradientBoostedTrees) print(source_code) 方法二: GradientBoostedTrees — PySpark 3.4.1 documentation (apache.org) 在官网中&…...
HCIP——OSPF的防环机制
OSPF的防环机制 一、域间防环二、域内防环有向图转化1、有向图的画法2、示例: 三、SPF算法 OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和…...
安全基础 --- 正则表达式
正则表达式是表达文本模式的方法 正则表达式(Regular Expression),简称为正则或Regex,是一个用来描述、匹配和操作字符串的工具。 (1)限定字符 限定字符多用于重复匹配次数 常用限定字符: 语…...
【vue】vue面试高频问题之-$nextTick的作用和使用场景
nextTick的作用和使用场景 vue中的nextTick主要用于处理数据动态变化后,DOM还未及时更新的问题,用nextTick就可以获取数据更新后最新DOM的变化 api文档 Vue.nextTick( [callback, context] ) 参数: {Function} [callback]{Object} [context]…...
MySQL学习笔记之SQL语句执行过程查看
文章目录 参数使能查看最近一条SQL执行过程查看profiling打开开后,所有SQL语句执行耗时查看某一条SQL的执行过程指定要查看的性能选项查看所有性能选项 参数使能 以select语句为例,首先打开profile参数: mysql> set profiling 1; Query…...
如何以毫秒精度,查看系统时间以及文件的创建时间
用 cmd 查看系统的时间: powershell -command "(Get-Date -UFormat %Y-%m-%d %H:%M:%S).toString() . ((Get-Date).millisecond)" 用 XYplorer 查看文件的精确创建时间(含30天试用): XYplorer - File Manager for …...
基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树
目录 1.算法理论概述 2.部分核心程序 3.算法运行软件版本 4.算法运行效果图预览 5.算法完整程序工程 1.算法理论概述 情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于…...
jMeter使用随记
参数化BodyData 先制作参数文件 再设置一个csv data set config 最后在body data里面写上参数${xxxxx}...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
