Numpy—数组的分隔与转置
⛳数组的切分
- split 分隔
- numpy.split 函数沿特定 的轴将数组分割为子数组,格式如下:
numpy.split(ary, indices_or_sections, axis) - 参数说明:
- arry:被分割的数组。
- indices_or_sections:如果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切 分的位置。
- axis:沿着哪个维度进行切分,默认为 0,横向切分。为 1 时,纵向切分。
- numpy.split 函数沿特定 的轴将数组分割为子数组,格式如下:
⛳transpose方法-数组的转置
-
NumPy是一个用于进行科学计算的Python库,其中包含了许多用于数组操作的函数和方法。
transpose()是NumPy数组对象的方法之一,用于对数组进行转置操作。 -
在NumPy中,可以使用
transpose()方法来交换数组的维度。该方法返回一个新的数组视图,而不改变原始数组。
下面是transpose()方法的基本语法:
numpy.transpose(arr, axes)
参数说明:
arr:要进行转置操作的数组。axes(可选):指定转置的维度顺序。它是一个整数元组,用于重新排列数组的轴。如果没有指定该参数,则默认为None。
示例用法:
import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])
transposed_arr = np.transpose(arr)print("Original Array:")
print(arr)print("\nTransposed Array:")
print(transposed_arr)
输出结果:
Original Array:
[[1 2 3][4 5 6]]Transposed Array:
[[1 4][2 5][3 6]]
在这个例子中,原始数组arr是一个2x3的数组。通过使用transpose()方法,我们将其转置为一个3x2的数组transposed_arr,其中原始数组的行变为转置数组的列。
注意:transpose()方法只是交换了数组的维度顺序,而不会改变数组中的实际元素顺序。如果想要改变数组中的元素顺序,可以使用reshape()方法或其他相关方法来重新排列数组。
🎯实战
# coding: utf-8import numpy as npx = np.arange(1, 9)
a = np.split(x, 4)
print(a)
print(a[0])
print(a[1])
print(a[2])
print(a[3])
# 传递数组进行分隔
b = np.split(x, [3, 5])
print(b)# split()函数分隔二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [11, 12, 13], [14, 15, 16]])
print('axis=0 垂直方向 平均分隔')
r = np.split(a, 2, axis=0)
print(r[0])
print(r[1])
print('axis=1 水平方向 按位置分隔')
r = np.split(a, [2], axis=1)
print(r)
print('=' * 30)# hsplit()的使用
grid = np.arange(16).reshape(4, 4)
a, b = np.hsplit(grid, 2)
print(a)
print(b)# vsplit()的使用
arr = np.arange(16).reshape(4, 4)
a, b = np.vsplit(arr, [3])
print('vsplit(arr, [3])的结果:')
print(a)
print(b)
print('vsplit(arr, [1, 3])的结果:')
a, b, c = np.vsplit(arr, [1, 3])
print(a)
print(b)
print(c)# transpose()函数的使用
# transpose 进行转置
# 二维转置
a = np.arange(1, 13).reshape(2, 6)
print('原数组a')
print(a)
print('转置后的数组')
print(a.transpose())# 多维数组转置
aaa = np.arange(1, 37).reshape(1, 3, 3, 4)
# 将1, 3, 3, 4转换为3, 3, 4, 1
print(np.transpose(aaa, [1, 2, 3, 0]).shape)
result:
[array([1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
[1 2]
[3 4]
[5 6]
[7 8]
[array([1, 2, 3]), array([4, 5]), array([6, 7, 8])]
axis=0 垂直方向 平均分隔
[[1 2 3][4 5 6]]
[[11 12 13][14 15 16]]
axis=1 水平方向 按位置分隔
[array([[ 1, 2],[ 4, 5],[11, 12],[14, 15]]), array([[ 3],[ 6],[13],[16]])]
==============================
[[ 0 1][ 4 5][ 8 9][12 13]]
[[ 2 3][ 6 7][10 11][14 15]]
vsplit(arr, [3])的结果:
[[ 0 1 2 3][ 4 5 6 7][ 8 9 10 11]]
[[12 13 14 15]]
vsplit(arr, [1, 3])的结果:
[[0 1 2 3]]
[[ 4 5 6 7][ 8 9 10 11]]
[[12 13 14 15]]
原数组a
[[ 1 2 3 4 5 6][ 7 8 9 10 11 12]]
转置后的数组
[[ 1 7][ 2 8][ 3 9][ 4 10][ 5 11][ 6 12]]
(3, 3, 4, 1)进程已结束,退出代码0相关文章:
Numpy—数组的分隔与转置
⛳数组的切分 split 分隔 numpy.split 函数沿特定 的轴将数组分割为子数组,格式如下: numpy.split(ary, indices_or_sections, axis)参数说明: arry:被分割的数组。indices_or_sections:如果是一个整数,就…...
PyTorch中级教程:深入理解自动求导和优化
在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。 …...
ES6基础知识六:你是怎么理解ES6中 Promise的?使用场景?
一、介绍 Promise,译为承诺,是异步编程的一种解决方案,比传统的解决方案(回调函数)更加合理和更加强大 在以往我们如果处理多层异步操作,我们往往会像下面那样编写我们的代码 doSomething(function(resu…...
数据库CAST()函数,格式(CAST AS decimal)
语法: CAST (expression AS data_type) 参数说明: expression:任何有效的SQServer表达式。 AS:用于分隔两个参数,在AS之前的是要处理的数据,在AS之后是要转换的数据类型。 data_type:目标系统…...
LRU 缓存结构
文章目录 LRU实现 LRU 优先去除最久没有访问到的数据。 实现 通过组合哈希表(Hash Table)和双向链表(Doubly Linked List)实现 LRU 缓存。并且以 O(1) 的时间复杂度执行 get 和 put 操作核心是对节点的新增、访问都会让节点移动…...
DAY1,Qt [ 手动实现登录框(信息调试类,按钮类,行编辑器类,标签类的使用)]
1.手动实现登录框; ---mychat.h---头文件 #ifndef MYCHAT_H #define MYCHAT_H#include <QWidget> #include <QDebug> //打印信息 #include <QIcon> //图标 #include <QPushButton> //按钮 #include <QLineEdit> //行编辑器类 #in…...
25.8 matlab里面的10中优化方法介绍—— 拉各朗日乘子法求最优化解(matlab程序)
1.简述 拉格朗日乘子法: 拉格朗日乘子法(Lagrange multipliers)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将有 变量与 约束条件的最优化问题转化为具有变量的无约束优化问题求解 举个例子ÿ…...
2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) | EI Compendex, Scopus双检索
会议简介 Brief Introduction 2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) 会议时间:2023年9月22日-24日 召开地点:中国杭州 大会官网:ECNLPIR 2023-2023 Eurasian Conference on Natural Language Processing and Information Retr…...
Python - 嵌入式数据库Sqlite3的基本使用
SQLite是一种轻量级的嵌入式关系型数据库管理系统,而Python标准库中提供了与SQLite交互的模块,sqlite3。下面是一个Python 3中使用sqlite3模块的详细示例与解析。 import sqlite3 # 创建或连接数据库 conn sqlite3.connect(example.db) # 创建一个…...
VB制作网页自动填表
VB制作简单模拟器教程入门版 第一讲 如何用VB编程打开一个网页: 由于是为做模拟器做铺垫,所以就不介绍别的方法,只介绍一种最简单的用webbrowser控件实现(实际是其他的方法我还没有学会)。 下面我们就开始步入模…...
Kotlin 和 Java对比,具体代码分析
目录 一、语法比较二、案列分析 Kotlin 和 Java 都是广泛使用的编程语言,它们有一些共同点,例如都追求面向对象编程,但也有许多不同之处。下面是 Kotlin 和 Java 之间的一些比较: 一、语法比较 声明变量:Kotlin 使用 …...
目标检测之3维合成
现在有一系列的图片,图片之间可以按照z轴方向进行排列。图片经过了目标检测,输出了一系列的检测框,现在的需求是将检测框按类别进行合成,以在3维上生成检测结果。 思路:将图片按照z轴方向排列,以z轴索引作…...
【playbook】Ansible的脚本----playbook剧本
Ansible的脚本----playbook剧本 1.playbook剧本组成2.playbook剧本实战演练2.1 实战演练一:给被管理主机安装Apache服务2.2 实战演练二:使用sudo命令将远程主机的普通用户提权为root用户2.3 实战演练三:when条件判断指定的IP地址2.4 实战演练…...
PySpark基本操作:如何查看源码
方法一: from pyspark.mllib.tree import GradientBoostedTrees import inspectsource_code inspect.getsource(GradientBoostedTrees) print(source_code) 方法二: GradientBoostedTrees — PySpark 3.4.1 documentation (apache.org) 在官网中&…...
HCIP——OSPF的防环机制
OSPF的防环机制 一、域间防环二、域内防环有向图转化1、有向图的画法2、示例: 三、SPF算法 OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和…...
安全基础 --- 正则表达式
正则表达式是表达文本模式的方法 正则表达式(Regular Expression),简称为正则或Regex,是一个用来描述、匹配和操作字符串的工具。 (1)限定字符 限定字符多用于重复匹配次数 常用限定字符: 语…...
【vue】vue面试高频问题之-$nextTick的作用和使用场景
nextTick的作用和使用场景 vue中的nextTick主要用于处理数据动态变化后,DOM还未及时更新的问题,用nextTick就可以获取数据更新后最新DOM的变化 api文档 Vue.nextTick( [callback, context] ) 参数: {Function} [callback]{Object} [context]…...
MySQL学习笔记之SQL语句执行过程查看
文章目录 参数使能查看最近一条SQL执行过程查看profiling打开开后,所有SQL语句执行耗时查看某一条SQL的执行过程指定要查看的性能选项查看所有性能选项 参数使能 以select语句为例,首先打开profile参数: mysql> set profiling 1; Query…...
如何以毫秒精度,查看系统时间以及文件的创建时间
用 cmd 查看系统的时间: powershell -command "(Get-Date -UFormat %Y-%m-%d %H:%M:%S).toString() . ((Get-Date).millisecond)" 用 XYplorer 查看文件的精确创建时间(含30天试用): XYplorer - File Manager for …...
基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树
目录 1.算法理论概述 2.部分核心程序 3.算法运行软件版本 4.算法运行效果图预览 5.算法完整程序工程 1.算法理论概述 情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势
一、WebRTC与智能硬件整合趋势 随着物联网和实时通信需求的爆发式增长,WebRTC作为开源实时通信技术,为浏览器与移动应用提供免插件的音视频通信能力,在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能,对实时…...
【java】【服务器】线程上下文丢失 是指什么
目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失? 直观示例说明 为什么上下文如此重要? 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程,代码应该如何实现 推荐方案:使用 ManagedE…...
【汇编逆向系列】六、函数调用包含多个参数之多个整型-参数压栈顺序,rcx,rdx,r8,r9寄存器
从本章节开始,进入到函数有多个参数的情况,前面几个章节中介绍了整型和浮点型使用了不同的寄存器在进行函数传参,ECX是整型的第一个参数的寄存器,那么多个参数的情况下函数如何传参,下面展开介绍参数为整型时候的几种情…...
