当前位置: 首页 > news >正文

自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):基础知识]

分类目录:《自然语言处理从入门到应用》总目录


聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输出的接口。 聊天模型的API还比较新,因此我们仍在确定正确的抽象层次。本问将介绍如何开始使用聊天模型,该接口是基于消息而不是原始文本构建的:

from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
chat = ChatOpenAI(temperature=0)

通过向聊天模型传递一个或多个消息,可以获取聊天完成的结果。响应将是一个消息。LangChain目前支持的消息类型有AIMessageHumanMessageSystemMessageChatMessage,其中ChatMessage接受一个任意的角色参数。大多数情况下,我们只需要处理HumanMessageAIMessageSystemMessage

chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])

输出:

AIMessage(content="J'aime programmer.", additional_kwargs={})

OpenAI的聊天模型支持多个消息作为输入。更多信息请参见这里。以下是向聊天模型发送系统消息和用户消息的示例:

messages = [SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")
]
chat(messages)

输出:

AIMessage(content="J'aime programmer.", additional_kwargs={})

您还可以进一步生成多组消息的完成结果,使用generate方法实现。该方法将返回一个带有额外message参数的LLMResult

batch_messages = [[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")],[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love artificial intelligence.")],
]
result = chat.generate(batch_messages)
result

输出:

LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})

我们可以从LLMResult中获取诸如标记使用情况之类的信息:

result.llm_output

输出:

{'token_usage': {'prompt_tokens': 57,'completion_tokens': 20,'total_tokens': 77}}

PromptTemplates

我们可以使用模板来构建MessagePromptTemplate。我们可以从一个或多个MessagePromptTemplate构建一个ChatPromptTemplate。我们还可以使用ChatPromptTemplateformat_prompt方法,它将返回一个PromptValue,我们可以将其转换为字符串或消息对象,具体取决于我们是否希望将格式化后的值作为输入传递给LLM或Chat模型的输入。为了方便起见,模板上公开了一个from_template方法。如果您要使用此模板,代码如下所示:

template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 获取格式化后的消息的聊天完成结果
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())

输出:

AIMessage(content="J'adore la programmation.", additional_kwargs={})

如果我们想直接更直接地构建MessagePromptTemplate,我们可以在外部创建一个PromptTemplate,然后将其传递进去,例如:

prompt=PromptTemplate(template="You are a helpful assistant that translates {input_language} to {output_language}.",input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)

LLMChain

我们可以以与以前非常相似的方式使用现有的LLMChain,即提供一个提示和一个模型:

chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")

输出:

"J'adore la programmation."

Streaming

通过回调处理,ChatOpenAI支持流式处理。

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])

输出:

Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to exciteChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeVerse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes firstChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeBridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel wholeChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeOutro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关文章:

自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):基础知识]

分类目录:《自然语言处理从入门到应用》总目录 聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输…...

Asp.Net 使用Log4Net (SQL Server)

Asp.Net 使用Log4Net (SQL Server) 1. 创建数据库表 首先,在你的SQL Server数据库中创建一个用于存储日志的表。以下是一个简单的表结构示例: CREATE TABLE [dbo].[Logs]([Id] [INT] IDENTITY(1,1) PRIMARY KEY,[Date] [DATETIME] NOT NULL,[Thread] …...

Vue2基础五、工程化开发

零、文章目录 Vue2基础五、工程化开发 1、工程化开发和脚手架 (1)开发 Vue 的两种方式 核心包传统开发模式:基于 html / css / js 文件,直接引入核心包,开发 Vue。工程化开发模式:基于构建工具&#xf…...

发现 ModStartCMS:构建梦想网站的全新选择

亲爱的网站开发者和内容创作者们, 在当今数字化的时代,网站已经成为展示品牌、传递信息和吸引目标受众的关键渠道。为了帮助您更高效地打造梦想中的网站,我们荣幸地向您介绍 ModStartCMS,这是一款基于 Laravel 的全新模块化内容管…...

大数据Flink(五十二):Flink中的批和流以及性能比较

文章目录 Flink中的批和流以及性能比较 ​​​​​​​​​​​​​​一、Flink中的批和流...

【MySQL】MySQL索引、事务、用户管理

20岁的男生穷困潦倒,20岁的女生风华正茂,没有人会一直风华正茂,也没有人会一直穷困潦倒… 文章目录 一、MySQL索引特性(重点)1.磁盘、OS、MySQL,在进行数据IO时三者的关系2.索引的理解3.聚簇索引&#xff0…...

函数重载与引用

文章目录 一、函数重载1. 重载规则2.重载列子3.函数名修饰规则 二、引用1.本质2.特性1. 引用必须在定义时初始化2 . 一个变量可以有多个引用3 . 引用一旦引用一个实体,就不能引用其他实体 3.引用例子4.引用的权限5.效率比较6.指针跟引用的区别 一、函数重载 函数重…...

如何快速模拟一个后端 API

第一步:创建一个文件夹,用来存储你的数据 数据: {"todos": [{ "id": 1, "text": "学习html44", "done": false },{ "id": 2, "text": "学习css", "…...

DLA :pytorch添加算子

pytorch的C extension写法 这部分主要介绍如何在pytorch中添加自定义的算子,需要以下cuda基础。就总体的逻辑来说正向传播需要输入数据,反向传播需要输入数据和上一层的梯度,然后分别实现这两个kernel,将这两个kernerl绑定到pytorch即可。 a…...

Java特殊时间格式转化

平常开发过程当中,我们可能会见到有的日期格式是这样的。 1、2022-12-21T12:20:1608:00 2、2022-12-21T12:20:16.0000800 3、2022-12-21T12:20:16.00008:00下面来说一下这种时间格式怎么转换 第一种:2022-12-21T12:20:1608:00 代码如下: p…...

在CSDN学Golang云原生(Kubernetes声明式资源管理Kustomize)

一,生成资源 在 Kubernetes 中,我们可以通过 YAML 或 JSON 文件来定义和创建各种资源对象,例如 Pod、Service、Deployment 等。下面是一个简单的 YAML 文件示例,用于创建一个 Nginx Pod: apiVersion: v1 kind: Pod m…...

后台管理系统中常见的三栏布局总结:使用element ui构建

vue2 使用 el-menu构建的列表布局&#xff1a; 列表可以折叠展开 <template><div class"home"><header><el-button type"primary" click"handleClick">切换</el-button></header><div class"conte…...

SpringCloud学习路线(10)——分布式搜索ElasticSeach基础

一、初识ES &#xff08;一&#xff09;概念&#xff1a; ES是一款开源搜索引擎&#xff0c;结合数据可视化【Kibana】、数据抓取【Logstash、Beats】共同集成为ELK&#xff08;Elastic Stack&#xff09;&#xff0c;ELK被广泛应用于日志数据分析和实时监控等领域&#xff0…...

CSS翻转DIV展示顺序

项目国际化开发中&#xff0c;阿拉伯语是从右往左读的&#xff0c;在做样式兼容时&#xff0c;一些表单代码块也需要 label在右&#xff0c;表单在左。如果整个项目改div的话代价太大了&#xff0c;所以需要做样式翻转。 html <div class"container"><div …...

python 源码中 PyId_stdout 如何定义的

python 源代码中遇到一个变量名 PyId_stdout&#xff0c;搜不到在哪里定义的&#xff0c;如下只能搜到引用的位置&#xff08;python3.8.10&#xff09;&#xff1a; 找了半天发现是用宏来构造的声明语句&#xff1a; // filepath: Include/cpython/object.h typedef struct …...

Mybatis映射关系mybatis核心配置文件

目录 1.Mybatis映射关系 1.1一对一映射之resultType 1.2resultMap处理映射关系 2.mybatis核心配置文件 1. properties&#xff08;属性&#xff09; 2. settings&#xff08;设置&#xff09; 3.typeAliases&#xff08;类型别名&#xff09; 4.environments&#xff0…...

Mybatis中limit用法与分页查询

错误示范 错误示范一&#xff1a; <select id"fileInspectionList" resultType"map">SELECT <include refid"aip_n_static_cols"/>FROM sys_inspection_form WHERE<if test" type admin.toString() ">dept_id …...

libcomposite: Unknown symbol config_group_init (err 0)

加载libcomposite.ko 失败 问题描述 如图&#xff0c;在做USB OTG 设备模式的时候需要用到libcomposite.ko驱动&#xff0c;加载失败了。 原因&解决方法 有一个依赖叫configfs.ko的驱动没有安装。可以从内核代码的fs/configfs/configfs.ko中找到这个驱动。先加载confi…...

Spring Tool Suite 4

参考&#xff1a;Spring tool suite4 安装及配置_springtoolsuite4_猿界零零七的博客-CSDN博客 下载&#xff1a;Spring | Tools 将下载的JAR进行解压两次&#xff0c;直至解压出contents中的sts 双击启动 第一次打开需要指定工作区文件夹 配置Maven的config 安装插件...

带你读论文第三期:微软研究员、北大博士陈琪,荣获NeurIPS杰出论文奖

Datawhale干货 来源&#xff1a;WhalePaper&#xff0c;负责人&#xff1a;芙蕖 WhalePaper简介 由Datawhale团队成员发起&#xff0c;对目前学术论文中比较成熟的 Topic 和开源方案进行分享&#xff0c;通过一起阅读、分享论文学习的方式帮助大家更好地“高效全面自律”学习&…...

农业中的计算机视觉 2023

物体检测应用于检测田间收割机和果园苹果 一、说明 欢迎来到Voxel51的计算机视觉行业聚焦博客系列的第一期。每个月&#xff0c;我们都将重点介绍不同行业&#xff08;从建筑到气候技术&#xff0c;从零售到机器人等&#xff09;如何使用计算机视觉、机器学习和人工智能来推动…...

掌握三个基础平面构成法则 优漫动游

1.图形重复&#xff1a;通过重复使用同一种或类似的图形元素,创造出一种有节奏、有重复感的视觉效果。这种设计手法可以使海报看起来更加统一和协调,增强视觉冲击力。 掌握三个基础平面构成法则 2.字体重复&#xff1a;通过重复使用同一种或类似的字体元素,创造出一种有序…...

叶工好容5-日志与监控

目录 前言 平台维度 docker运行状态 cAdvisor-日志采集者 Heapster-日志收集 metrics-server-出生决定成败 kube-state-metrics-不完美中的完美 应用维度 日志 部署方式 输出方式 工具选择 日志接入 监控 serviceMonitor Annotation Prometheus扩展性 Thanos …...

Dubbo 指定调用固定ip+port dubbo调用指定服务 dubbo调用不随机 dubbo自定义调用服务 dubbo点对点通信 dubbo指定ip

1. 在写分布式im时nami-im: 分布式im, 集群 zookeeper netty kafka nacos rpc主要为gate&#xff08;长连接服务&#xff09; logic &#xff08;业务&#xff09; lsb &#xff08;负载均衡&#xff09;store&#xff08;存储&#xff09; - Gitee.com&#xff0c;需要指定某一…...

BCNet论文精读

Title—标题 Boundary Constraint Network&#xff08;边界约束网络&#xff09; With Cross Layer Feature Integration&#xff08;跨层特征融合&#xff09; for Polyp Segmentation&#xff08;息肉分割&#xff09; 结构分析 标题结构由三部分组成&#xff0c;分别是本文…...

PHP8的注释-PHP8知识详解

欢迎你来到PHP服务网&#xff0c;学习《PHP8知识详解》系列教程&#xff0c;本文学习的是《PHP8的注释》。 什么是注释&#xff1f; 注释是在程序代码中添加的文本&#xff0c;用于解释和说明代码的功能、逻辑或其他相关信息。注释通常不会被编译器或解释器处理&#xff0c;而…...

优化企业集成架构:iPaaS集成平台助力数字化转型

前言 在数字化时代全面来临之际&#xff0c;企业正面临着前所未有的挑战与机遇。技术的迅猛发展与数字化转型正在彻底颠覆各行各业的格局&#xff0c;不断推动着企业迈向新的前程。然而&#xff0c;这一数字化时代亦衍生出一系列复杂而深奥的难题&#xff1a;各异系统之间数据…...

前端存储之sessionStorage和localStorage

sessionStorage sessionStorage是一种用于web浏览器中临时保存数据的客户端存储机制。它允许在同一个浏览器窗口的会话期间&#xff0c;保存和访问临时数据&#xff0c;而这些数据在用户关闭窗口或者标签页会被清除。每个sessionStorage对象都与当前的浏览器会话相关联&#x…...

上海亚商投顾:沪指放量大涨1.84% 证券股掀涨停潮

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 市场情绪 三大指数今日低开高走&#xff0c;沪指午后放量涨近2%&#xff0c;上证50盘中大涨超3%。大金融板块全线爆发&#…...

微服务划分的原则

微服务的划分 微服务的划分要保证的原则 单一职责原则 1、耦合性也称块间联系。指软件系统结构中各模块间相互联系紧密程度的一种度量。模块之间联系越紧密&#xff0c;其耦合性就越强&#xff0c;模块的独立性则越差。模块间耦合高低取决于模块间接口的复杂性、调用的方式及…...