自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):基础知识]
分类目录:《自然语言处理从入门到应用》总目录
聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输出的接口。 聊天模型的API还比较新,因此我们仍在确定正确的抽象层次。本问将介绍如何开始使用聊天模型,该接口是基于消息而不是原始文本构建的:
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
chat = ChatOpenAI(temperature=0)
通过向聊天模型传递一个或多个消息,可以获取聊天完成的结果。响应将是一个消息。LangChain目前支持的消息类型有AIMessage、HumanMessage、SystemMessage和ChatMessage,其中ChatMessage接受一个任意的角色参数。大多数情况下,我们只需要处理HumanMessage、AIMessage和SystemMessage:
chat([HumanMessage(content="Translate this sentence from English to French. I love programming.")])
输出:
AIMessage(content="J'aime programmer.", additional_kwargs={})
OpenAI的聊天模型支持多个消息作为输入。更多信息请参见这里。以下是向聊天模型发送系统消息和用户消息的示例:
messages = [SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")
]
chat(messages)
输出:
AIMessage(content="J'aime programmer.", additional_kwargs={})
您还可以进一步生成多组消息的完成结果,使用generate方法实现。该方法将返回一个带有额外message参数的LLMResult。
batch_messages = [[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love programming.")],[SystemMessage(content="You are a helpful assistant that translates English to French."),HumanMessage(content="I love artificial intelligence.")],
]
result = chat.generate(batch_messages)
result
输出:
LLMResult(generations=[[ChatGeneration(text="J'aime programmer.", generation_info=None, message=AIMessage(content="J'aime programmer.", additional_kwargs={}))], [ChatGeneration(text="J'aime l'intelligence artificielle.", generation_info=None, message=AIMessage(content="J'aime l'intelligence artificielle.", additional_kwargs={}))]], llm_output={'token_usage': {'prompt_tokens': 57, 'completion_tokens': 20, 'total_tokens': 77}})
我们可以从LLMResult中获取诸如标记使用情况之类的信息:
result.llm_output
输出:
{'token_usage': {'prompt_tokens': 57,'completion_tokens': 20,'total_tokens': 77}}
PromptTemplates
我们可以使用模板来构建MessagePromptTemplate。我们可以从一个或多个MessagePromptTemplate构建一个ChatPromptTemplate。我们还可以使用ChatPromptTemplate的format_prompt方法,它将返回一个PromptValue,我们可以将其转换为字符串或消息对象,具体取决于我们是否希望将格式化后的值作为输入传递给LLM或Chat模型的输入。为了方便起见,模板上公开了一个from_template方法。如果您要使用此模板,代码如下所示:
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])# 获取格式化后的消息的聊天完成结果
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
输出:
AIMessage(content="J'adore la programmation.", additional_kwargs={})
如果我们想直接更直接地构建MessagePromptTemplate,我们可以在外部创建一个PromptTemplate,然后将其传递进去,例如:
prompt=PromptTemplate(template="You are a helpful assistant that translates {input_language} to {output_language}.",input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)
LLMChain
我们可以以与以前非常相似的方式使用现有的LLMChain,即提供一个提示和一个模型:
chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(input_language="English", output_language="French", text="I love programming.")
输出:
"J'adore la programmation."
Streaming
通过回调处理,ChatOpenAI支持流式处理。
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
输出:
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to exciteChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeVerse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes firstChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeBridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel wholeChorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibeOutro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling
参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/
相关文章:
自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):基础知识]
分类目录:《自然语言处理从入门到应用》总目录 聊天模型是语言模型的一种变体。虽然聊天模型在内部使用语言模型,但它们公开的接口略有不同。它们不是提供一个“输入文本,输出文本”的API,而是提供一个以“聊天消息”作为输入和输…...
Asp.Net 使用Log4Net (SQL Server)
Asp.Net 使用Log4Net (SQL Server) 1. 创建数据库表 首先,在你的SQL Server数据库中创建一个用于存储日志的表。以下是一个简单的表结构示例: CREATE TABLE [dbo].[Logs]([Id] [INT] IDENTITY(1,1) PRIMARY KEY,[Date] [DATETIME] NOT NULL,[Thread] …...
Vue2基础五、工程化开发
零、文章目录 Vue2基础五、工程化开发 1、工程化开发和脚手架 (1)开发 Vue 的两种方式 核心包传统开发模式:基于 html / css / js 文件,直接引入核心包,开发 Vue。工程化开发模式:基于构建工具…...
发现 ModStartCMS:构建梦想网站的全新选择
亲爱的网站开发者和内容创作者们, 在当今数字化的时代,网站已经成为展示品牌、传递信息和吸引目标受众的关键渠道。为了帮助您更高效地打造梦想中的网站,我们荣幸地向您介绍 ModStartCMS,这是一款基于 Laravel 的全新模块化内容管…...
大数据Flink(五十二):Flink中的批和流以及性能比较
文章目录 Flink中的批和流以及性能比较 一、Flink中的批和流...
【MySQL】MySQL索引、事务、用户管理
20岁的男生穷困潦倒,20岁的女生风华正茂,没有人会一直风华正茂,也没有人会一直穷困潦倒… 文章目录 一、MySQL索引特性(重点)1.磁盘、OS、MySQL,在进行数据IO时三者的关系2.索引的理解3.聚簇索引࿰…...
函数重载与引用
文章目录 一、函数重载1. 重载规则2.重载列子3.函数名修饰规则 二、引用1.本质2.特性1. 引用必须在定义时初始化2 . 一个变量可以有多个引用3 . 引用一旦引用一个实体,就不能引用其他实体 3.引用例子4.引用的权限5.效率比较6.指针跟引用的区别 一、函数重载 函数重…...
如何快速模拟一个后端 API
第一步:创建一个文件夹,用来存储你的数据 数据: {"todos": [{ "id": 1, "text": "学习html44", "done": false },{ "id": 2, "text": "学习css", "…...
DLA :pytorch添加算子
pytorch的C extension写法 这部分主要介绍如何在pytorch中添加自定义的算子,需要以下cuda基础。就总体的逻辑来说正向传播需要输入数据,反向传播需要输入数据和上一层的梯度,然后分别实现这两个kernel,将这两个kernerl绑定到pytorch即可。 a…...
Java特殊时间格式转化
平常开发过程当中,我们可能会见到有的日期格式是这样的。 1、2022-12-21T12:20:1608:00 2、2022-12-21T12:20:16.0000800 3、2022-12-21T12:20:16.00008:00下面来说一下这种时间格式怎么转换 第一种:2022-12-21T12:20:1608:00 代码如下: p…...
在CSDN学Golang云原生(Kubernetes声明式资源管理Kustomize)
一,生成资源 在 Kubernetes 中,我们可以通过 YAML 或 JSON 文件来定义和创建各种资源对象,例如 Pod、Service、Deployment 等。下面是一个简单的 YAML 文件示例,用于创建一个 Nginx Pod: apiVersion: v1 kind: Pod m…...
后台管理系统中常见的三栏布局总结:使用element ui构建
vue2 使用 el-menu构建的列表布局: 列表可以折叠展开 <template><div class"home"><header><el-button type"primary" click"handleClick">切换</el-button></header><div class"conte…...
SpringCloud学习路线(10)——分布式搜索ElasticSeach基础
一、初识ES (一)概念: ES是一款开源搜索引擎,结合数据可视化【Kibana】、数据抓取【Logstash、Beats】共同集成为ELK(Elastic Stack),ELK被广泛应用于日志数据分析和实时监控等领域࿰…...
CSS翻转DIV展示顺序
项目国际化开发中,阿拉伯语是从右往左读的,在做样式兼容时,一些表单代码块也需要 label在右,表单在左。如果整个项目改div的话代价太大了,所以需要做样式翻转。 html <div class"container"><div …...
python 源码中 PyId_stdout 如何定义的
python 源代码中遇到一个变量名 PyId_stdout,搜不到在哪里定义的,如下只能搜到引用的位置(python3.8.10): 找了半天发现是用宏来构造的声明语句: // filepath: Include/cpython/object.h typedef struct …...
Mybatis映射关系mybatis核心配置文件
目录 1.Mybatis映射关系 1.1一对一映射之resultType 1.2resultMap处理映射关系 2.mybatis核心配置文件 1. properties(属性) 2. settings(设置) 3.typeAliases(类型别名) 4.environments࿰…...
Mybatis中limit用法与分页查询
错误示范 错误示范一: <select id"fileInspectionList" resultType"map">SELECT <include refid"aip_n_static_cols"/>FROM sys_inspection_form WHERE<if test" type admin.toString() ">dept_id …...
libcomposite: Unknown symbol config_group_init (err 0)
加载libcomposite.ko 失败 问题描述 如图,在做USB OTG 设备模式的时候需要用到libcomposite.ko驱动,加载失败了。 原因&解决方法 有一个依赖叫configfs.ko的驱动没有安装。可以从内核代码的fs/configfs/configfs.ko中找到这个驱动。先加载confi…...
Spring Tool Suite 4
参考:Spring tool suite4 安装及配置_springtoolsuite4_猿界零零七的博客-CSDN博客 下载:Spring | Tools 将下载的JAR进行解压两次,直至解压出contents中的sts 双击启动 第一次打开需要指定工作区文件夹 配置Maven的config 安装插件...
带你读论文第三期:微软研究员、北大博士陈琪,荣获NeurIPS杰出论文奖
Datawhale干货 来源:WhalePaper,负责人:芙蕖 WhalePaper简介 由Datawhale团队成员发起,对目前学术论文中比较成熟的 Topic 和开源方案进行分享,通过一起阅读、分享论文学习的方式帮助大家更好地“高效全面自律”学习&…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
