性能优化 - 前端性能监控和性能指标计算方式
性能优化 - 前端性能监控和性能指标计算方式
- 前言
- 一. 性能指标介绍
- 1.1 单一指标介绍
- 1.2 指标计算
- ① Redirect(重定向耗时)
- ② AppCache(应用程序缓存的DNS解析)
- ③ DNS(DNS解析耗时)
- ④ TCP(TCP连接耗时)
- ⑤ TTFB(请求响应耗时)
- ⑥ Trans(内容传输耗时)
- ⑦ DOM(DOM解析耗时)
- 1.3 FP(first-paint) 和 FCP(first-contentful-paint)
- 1.4 LCP(Largest Contentful Paint)
- 1.5 LongTask长任务统计
- 二. 性能指标计算测试
- 2.1 衡量网络请求响应时间的指标
- 2.2 衡量页面加载速度的指标
- 2.3 TTI(Time to Interactive)衡量页面可交互性的指标
- 2.4 TBT(Total Blocking Time)
- 2.5 总结
前言
利用LightHouse进行合理的页面性能优化 这篇文章主要讲解了如何使用Lighthouse。 这里把相关图片再展示一下:

我们可以看到Lighthouse计算的时候,会根据这几个维度的指标来计算总分。那么本篇文章,就主要讲解下前端性能监控相关的重要指标含义和计算方式。
一. 性能指标介绍
在介绍指标之前,我们首先应当知道这些数据可以从哪里获取。JS里面,有一个 performance 对象,它是专门用来用于性能监控的对象,内置了一些前端需要的性能参数。
我们随便打开一个浏览器,在终端控制台输入以下内容:
performance.getEntriesByType('navigation')
如图:

1.1 单一指标介绍
navigationStart:导航开始的时间,即浏览器开始获取页面的时间。redirectCount:重定向次数,表示在导航过程中发生的重定向次数。type:导航类型,可能的取值有:navigate:常规导航,例如用户点击链接或输入URL进行的导航。reload:页面重新加载。back_forward:通过浏览器的前进或后退按钮导航。
unloadEventStart:前一个页面的unload事件开始的时间。unloadEventEnd:前一个页面的unload事件结束的时间。redirectStart:重定向开始的时间。redirectEnd:重定向结束的时间。fetchStart:浏览器开始获取页面资源的时间。domainLookupStart:域名解析开始的时间。domainLookupEnd:域名解析结束的时间。connectStart:建立与服务器连接开始的时间。connectEnd:建立与服务器连接结束的时间。secureConnectionStart:安全连接开始的时间,如果不是安全连接,则该值为0。requestStart:向服务器发送请求的时间。responseStart:接收到服务器响应的时间。responseEnd:接收到服务器响应并且所有资源都已接收完成的时间。domLoading:开始解析文档的时间。domInteractive:文档解析完成并且所有子资源(例如图片、样式表等)也已加载完成的时间。domContentLoadedEventStart:DOMContentLoaded事件开始的时间,表示HTML文档解析完成并且所有脚本文件已下载完成。domContentLoadedEventEnd:DOMContentLoaded事件结束的时间,表示所有脚本文件已执行完成。domComplete:文档和所有子资源(例如图片、样式表等)都已完成加载的时间。loadEventStart:load事件开始的时间,表示所有资源(包括图片、样式表、脚本文件等)都已加载完成。loadEventEnd:load事件结束的时间,表示所有资源(包括图片、样式表、脚本文件等)都已执行完成。
1.2 指标计算
我们看下图

我们从上图出发,分别对各个阶段进行计算,我们说下几个比较重要的阶段,按照从左往右的顺序。
① Redirect(重定向耗时)
表示从重定向开始(redirectStart)到重定向结束的时间(redirectEnd)的时间间隔,它反映了浏览器在这段时间内完成了重定向的过程:
const redirectTime = redirectEnd - redirectStart
② AppCache(应用程序缓存的DNS解析)
这一部分也是在进行DNS解析,在使用AppCache(应用程序缓存)的情况下,浏览器会在加载页面时检查缓存中是否存在相应的资源,并根据需要更新缓存:
const appcacheTime = domainLookupStart - fetchStart
③ DNS(DNS解析耗时)
DNS解析耗时:在浏览器加载网页时,当需要与服务器建立连接时,浏览器会首先进行DNS解析,将域名转换为对应的IP地址。DNS解析的过程包括向DNS服务器发送查询请求、等待DNS服务器响应以及获取到IP地址。
dns = domainLookupEnd - domainLookupStart
④ TCP(TCP连接耗时)
TCP连接耗时:在浏览器加载网页时,当浏览器需要与服务器建立连接时,它会向服务器发送请求,并等待服务器响应。建立连接的过程包括TCP握手、SSL握手等。
tcp = connectEnd - connectStart
其中还有建立SSL连接的时间,包括在TCP耗时里面。
ssl = connectEnd - secureConnectionStart
⑤ TTFB(请求响应耗时)
请求耗时:从发送请求到接收到服务器响应的第一个字节所花费的时间。
ttfb = responseStart - requestStart
⑥ Trans(内容传输耗时)
当浏览器发送请求后,服务器会返回相应的响应,这个差值就是衡量浏览器接收服务器响应的耗时。
trans = responseEnd - responseStart
⑦ DOM(DOM解析耗时)
DOM这一块比较复杂,实际上还能分成3个小DOM阶段。
- 阶段一(注意,上图中并没有显式地展示出来):解析
DOM阶段。
const dom1 = domInteractive - responseEnd
- 阶段二:文档解析完成,
html、js解析完成,css、图片加载完成。即加载DOM阶段。
const dom2 = domComplete-domInteractive
- 阶段二当中还可以分出一小个阶段:代表从开始加载
DOM内容到DOM内容加载完成的时间间隔。
const domLoaded = domContentLoadedEventEnd - domContentLoadedEventStart
1.3 FP(first-paint) 和 FCP(first-contentful-paint)
FP(first-paint)和FCP(first-contentful-paint)
FP指的是浏览器首次将像素渲染到屏幕上的时间点,即页面开始渲染的时间点。通常情况下,FP是指浏览器首次绘制任何可见的内容,包括背景色、文字、图片等,但不包括用户界面的控件,比如滚动条、按钮等。
FCP指的是浏览器首次将页面的有意义的内容渲染到屏幕上的时间点,即页面开始呈现有意义的内容的时间点。有意义的内容可以是文本、图片、视频等,但不包括背景色、边框等无意义的内容。
一般情况下,两者基本上没有什么区别,来说下两者的获取方式:
const fp = performance.getEntriesByName('first-paint')[0].startTime
const fcp = performance.getEntriesByName('first-contentful-paint')[0].startTime
后面我们都只说FCP。
1.4 LCP(Largest Contentful Paint)
LCP:Largest Contentful Paint :它表示在页面加载过程中,最大的可见内容元素(例如图片、视频、文本块等)加载完成并呈现在屏幕上的时间点。,是测量加载速度感知的重要指标之一。
获取方式,我们主要通过Performance 来进行监听:
new PerformanceObserver((entryList) => {var maxSize = 0;var renderTime = 0;for (var entry of entryList.getEntries()) {// 渲染的内容看最大值if(entry.size > maxSize){maxSize = entry.size;renderTime = entry.startTime;}}console.log('LCP', renderTime)
}).observe({type: 'largest-contentful-paint', buffered: true});
1.5 LongTask长任务统计
LongTask(长任务)是指在JavaScript主线程上执行时间超过50毫秒的任务。这些任务可能是复杂的计算、大量数据处理、DOM操作或其他耗时的操作。
我们可以通过以下方式来获取:
new PerformanceObserver((entryList) => {var list = entryList.getEntries();var entry = list[list.length-1];if(entry){console.log('LongTask',entry.startTime)}
}).observe({type: 'longtask', buffered: true});
一般我们取最后一个就是长任务的总耗时。这个值越低,性能越高。
二. 性能指标计算测试
贴出案例代码:
function test() {const entry = performance.getEntriesByType('navigation')[0]const {domComplete, secureConnectionStart, domInteractive, domContentLoadedEventStart, domainLookupEnd,domainLookupStart, connectEnd, connectStart, responseStart, requestStart, responseEnd, loadEventStart, domContentLoadedEventEnd, fetchStart, redirectEnd, redirectStart} = entry// redirectTimeconst redirectTime = redirectEnd - redirectStart// appcacheTimeconst appcacheTime = domainLookupStart - fetchStart// DNS解析时间const dnsTime = domainLookupEnd - domainLookupStart// TCP建立时间const tcpTime = connectEnd - connectStart// ssl 时间const sslTime = connectEnd - secureConnectionStart// requestTime 读取页面第一个字节的时间(请求时间)const requestTime = responseStart - requestStart// 返回响应时间const responseTime = responseEnd - responseStart// domContentLoadedEventEnd - domContentLoadedEventStartconst domLoaded = domContentLoadedEventEnd - domContentLoadedEventStart// loadEventEnd - loadEventStartconst loadTime = loadEventStart - domContentLoadedEventEndconst dom1 = domInteractive - responseEnd// 解析dom树耗时const dom2 = domComplete - domInteractiveconsole.log('********各个阶段的消耗耗时********')console.log('redirectTime', redirectTime)console.log('appcacheTime', appcacheTime)console.log('dnsTime', dnsTime)console.log('tcpTime', tcpTime, '其中包括ssl时间', sslTime)console.log('TTFB(请求响应耗时)', requestTime)console.log('Trans(内容传输耗时)', responseTime)console.log('解析`DOM`阶段', dom1)console.log('加载`DOM`阶段', dom2, '其中包括(domContentLoadedEventEnd - domContentLoadedEventStart)', domLoaded)console.log('load事件耗时', loadTime)console.log('********校验时间差********')console.log('***********校验 responseStart - fetchStart差值**************');console.log('responseStart - fetchStart', responseStart - fetchStart)console.log('appCache + dns+ tcp + requestTime 总和:', appcacheTime + dnsTime + tcpTime + requestTime)console.log('***********校验 domInteractive - fetchStart差值**************');const tmp = appcacheTime + dnsTime + tcpTime + requestTime + responseTimeconst diff = domInteractive - fetchStartconsole.log('domInteractive - fetchStart', diff)console.log( 'appCache + dns+ tcp + request + response, 总和:', tmp, ', 空白时间', diff - tmp)console.log('空白时间(就是文档解析和构建DOM树的过程),即DOM1(domInteractive - responseEnd)', dom1)// 算一下domCompelete - fetchStartconsole.log('domCompelete - fetchStart', domComplete - fetchStart)console.log('********FCP********')const fcp = performance.getEntriesByName('first-contentful-paint')[0].startTimeconsole.log("LCP(通过performance.getEntriesByName('first-contentful-paint')计算出来的)", fcp)console.log('********LCP********')new PerformanceObserver((entryList) => {var maxSize = 0;var renderTime = 0;for (var entry of entryList.getEntries()) {// 渲染的内容看最大值if (entry.size > maxSize) {maxSize = entry.size;renderTime = entry.startTime;}}console.log('LCP', renderTime)}).observe({ type: 'largest-contentful-paint', buffered: true });console.log('********LongTask********')new PerformanceObserver((entryList) => {var list = entryList.getEntries();var entry = list[list.length - 1];if (entry) {console.log('LongTask', entry.startTime)}}).observe({ type: 'longtask', buffered: true });
}
复制这段代码到浏览器中,然后运行test()即可,结果如下:(FCP打印错了)

代码里主要打印了各个阶段的耗时时长。我们主要看下下半部分的校验部分。再把上面的图搬过来对照着看:

2.1 衡量网络请求响应时间的指标
从发起网络请求(fetchStart)到服务器开始响应(responseStart)的时间间隔。
responseStart - fetchStart的差值为257毫秒。- 而这个差值由:
appCache + dns+ tcp + requestTime4个阶段连接而成,4个阶段的时间总和为256.5毫秒,基本上接近。
2.2 衡量页面加载速度的指标
从发起网络请求(fetchStart)到DOM解析完成(domInteractive)的时间间隔
domInteractive - fetchStart的差值为1328毫秒。- 而这个差值由:
appCache + dns+ tcp + request + response + 空白时间部分组成(空白时间就是上图的红色框部分)。 - 我们可以看到,前5个区域的时间总和大概是:480毫秒。空白时间则848毫秒。
- 我们又计算了
domInteractive - responseEnd的差值,实际上就是DOM1,也就是加载DOM的时间,时间差为848毫秒,相吻合。
综上所述:
- 页面加载速度的指标可以由:
DNS+TCP+Request+Response+DOM加载完毕耗时的总和来决定。
另外我们还能看出来,LCP的计算可以几乎为:domInteractive - fetchStart, 当然你用PerformanceObserver进行监听也是可以的。
这里代表页面加载速度,此时DOM仅仅是解析完成,如果想看DOM也加载完成的耗时,看指标domComplete - fetchStart。
2.3 TTI(Time to Interactive)衡量页面可交互性的指标
TTI:表示从页面开始加载到用户可以与页面进行交互的时间。它的计算方式如下:
FCP时间为起始时间- 查找到指示有5s的静默窗口时间(没有长任务并且不超过两个正在执行的
GET请求)。 - 向后搜索静默窗口前的最后一个长任务,如果没有找到长任务,则在
FCP上停止。 TTI是在安静窗口之前最后一个长任务的结束时间(如果没有找到长任务,则与FCP相同)

建议大家使用谷歌官方提供的:tti-polyfill
import ttiPolyfill from './path/to/tti-polyfill.js';ttiPolyfill.getFirstConsistentlyInteractive(opts).then((tti) => {// Use `tti` value in some way.
});
当然,也可以使用一种较为粗略的方式来计算:
- 首先我们理解一下
TTI,是从页面开始加载到用户可以与页面进行交互的时间。 - 页面开始加载,我们是不是可以看做
fetchStart的时间。 - 页面进行交互的时间,那这个时候dom肯定是加载完毕了。我们按照非常极限的思路去想,这个是不是可以看做
dom加载完毕的时间点,即domComplete。 - 那么
TTI ≈ domComplete - fetchStart
例如我用Lighthouse计算出来的TTI:

使用:domComplete - fetchStart 计算出来的值:
function getTTI(){const entry = performance.getEntriesByType('navigation')[0]const {domComplete,fetchStart} = entryconsole.log('TTI', domComplete - fetchStart)
}
getTTI()
结果如下:

2.4 TBT(Total Blocking Time)
TBT就是衡量从FCP时间点到TTI这个时间点的时间区间内,所有超过50毫秒的长任务的总耗时。(这个看下来难以通过编码的方式来实现计算,也无法预估)
2.5 总结
- 我们在为页面做性能监控的时候,
LCP和FCP是我们的几个重要关注对象。 LCP可以通过PerformanceObserver进行检测。FCP可以通过performance.getEntriesByName('first-contentful-paint')[0].startTime获取。- 页面性能的发部分数据都可以从
performance.getEntriesByType('navigation')[0]这里面获取到。 - 如果你想衡量网络请求响应时间的指标:
responseStart - fetchStart,代表从发起网络请求(fetchStart)到服务器开始响应(responseStart)的时间间隔。 - 如果你想衡量页面加载速度的指标:
domInteractive - fetchStart,代表从发起网络请求(fetchStart)到DOM解析完成(domInteractive)的时间间隔。 domComplete - fetchStart这个差值基本上囊括了最核心的部分。包括了从开始获取页面资源到DOM解析完成的整个过程,其中包括了网络请求、资源加载、解析HTML、构建DOM树等操作。
相关文章:
性能优化 - 前端性能监控和性能指标计算方式
性能优化 - 前端性能监控和性能指标计算方式 前言一. 性能指标介绍1.1 单一指标介绍1.2 指标计算① Redirect(重定向耗时)② AppCache(应用程序缓存的DNS解析)③ DNS(DNS解析耗时)④ TCP(TCP连接耗时)⑤ TTFB(请求响应耗时)⑥ Trans(内容传输耗时)⑦ DOM(DOM解析耗时) 1.3 FP(f…...
git stash clear清空本地暂存代码
git stash clear清空本地暂存代码 git stash 或者 git stash list 查看本地暂存的代码。 清除本地暂存的代码修改: git stash clear git回退代码仓库版本_git回退到之前的版本会影响本地代码嘛_zhangphil的博客-CSDN博客git回退代码版本_git回退到之前的版本会影…...
消防应急照明设置要求在炼钢车间电气室的应用
摘 要:文章以GB51309—2018《消防应急照明和疏散指示系统技术标准》为设计依据,结合某炼钢车间转炉项目的设计过程,在炼钢车间电气室的疏散照明和备用照明的设计思路、原则和方法等方面进行阐述。通过选择合理的消防应急疏散照明控制系统及灯具供配电方案…...
element 表单验证 深层验证绑定
直接上代码 :prop 和prop 都可以,vue2和vue3或者是element、elementplus都可以用 <template><div class"page page-table"><section class"page-query-form"><breadcrumb :hasLine"false" /></section&g…...
brew 换镜像网站
在国内,使用brew极慢. 因为它需要访问国外的一些服务器. 解决方法是使用国内的镜像站. 如果是首次安装: curl https://raw.githubusercontent.com/Homebrew/install/master/install.sh > install-brew.sh 然后,在下载的文件中, 修改BREW_REPO为: BREW_REPO"https…...
WIZnet W5500-EVB-Pico 静态IP配置教程(二)
W5500是一款高性价比的 以太网芯片,其全球独一无二的全硬件TCP、IP协议栈专利技术,解决了嵌入式以太网的接入问题,简单易用,安全稳定,是物联网设备的首选解决方案。WIZnet提供完善的配套资料以及实时周到的技术支持服务…...
R语言无法调用stats.dll的问题解决方案[补充]
写在前面 在去年10月份,出过一起关于R语言无法调用stats.dll的问题解决方案,今天(你看到后是昨天)不知道为什么,安装包,一直安装不了,真的是炸裂了。后面再次把R与Rstuido升级。说实话,我是真不…...
无线蓝牙耳机有什么推荐?怎么选择适合自己的耳机?七款蓝牙耳机分享
随着信息技术的不断发展,蓝牙耳机的不断发展也是必然的,可以说蓝牙耳机在大部分人们的生活中是不可缺少的一部分。那么我们该怎么去挑选出适合我们自己的需求的“蓝”朋友呢? 第一款:南卡小音舱lite2蓝牙耳机 推荐指数ÿ…...
【数据分析专栏之Python篇】四、pandas介绍
前言 在上一篇中我们安装和使用了Numpy。本期我们来学习使用 核心数据分析支持库 Pandas。 一、pandas概述 1.1 pandas 简介 Pandas 是 Python 的 核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。 …...
《算法竞赛·快冲300题》每日一题:“最小生成树”
《算法竞赛快冲300题》将于2024年出版,是《算法竞赛》的辅助练习册。 所有题目放在自建的OJ New Online Judge。 用C/C、Java、Python三种语言给出代码,以中低档题为主,适合入门、进阶。 文章目录 题目描述题解C代码Java代码Python代码 “ 最…...
mysql的主键选择
一.没有定义主键有什么问题 如果定义了主键,那么InnoDB会使用主键作为聚簇索引如果没有定义主键,那么会使用第一非空的唯一索引(NOT NULL and UNIQUE INDEX)作为聚簇索引如果既没有主键也找不到合适的非空索引,那么In…...
Eureka 学习笔记1:服务端实例缓存
版本 awsVersion ‘1.11.277’ 缓存类型registryConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>>AbstractInstanceRegistry成员变量readWriteCacheMapLoadingCacheResponseCacheImpl成员变量readOnlyCacheMapConcurrentMap<Key, Value>…...
vue : 无法加载文件 C:\Users\86182\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。
windows11: PS E:\VueProjects> vue vue : 无法加载文件 C:\Users\86182\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅 https:/ go.microsoft.com/fwlink/?LinkID135170 中的 about_Execution_Policie…...
FLinkCDC读取MySQl时间戳时区相关问题解决汇总
FlinkCDC时间问题timestamp等https://blog.csdn.net/qq_30529079/article/details/127809317 FLinkCDC读取MySQl中的日期问题https://blog.csdn.net/YPeiQi/article/details/130265653 关于flink1.11 flink sql使用cdc时区差8小时问题https://blog.csdn.net/weixin_44762298/…...
第三篇-Tesla P40+CentOS7+CUDA 11.7 部署实践
硬件环境 系统:CentOS-7 CPU: 14C28T 显卡:Tesla P40 24G 准备安装 驱动: 515 CUDA: 11.7 cuDNN: 8.9.2.26 安装依赖 yum clean all yum update yum install -y gcc gcc-c pciutils kernel-devel-$(uname -r) kernel-headers-$(uname -r)查看GPU信息…...
AC+FIT(瘦AP)配置浅谈
FIT ensp实验材料 :pc、路由器、三层交换机、二层交换机、ac、ap 保证连通性: 根据ac与ap设计好的ip配置,使之可以通讯 ac与ap可以实现跨网段管理 1、设置三层交换机的vlan 与vlanif信息 dhcp enable //开启dhcp ip pool forap //…...
【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )
文章目录 一、RDD#flatMap 方法1、RDD#flatMap 方法引入2、解除嵌套3、RDD#flatMap 语法说明 二、代码示例 - RDD#flatMap 方法 一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map…...
二叉树题目:左叶子之和
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:左叶子之和 出处:404. 左叶子之和 难度 3 级 题目描述 要求 给你二叉树的根结点 root \texttt{ro…...
Spark SQL报错: Task failed while writing rows.
错误 今天运行 Spark 任务时报了一个错误,如下所示: WARN scheduler.TaskSetManager: Lost task 9.0 in stage 3.0 (TID 69, xxx.xxx.xxx.com, executor 3): org.apache.spark.SparkException: Task failed while writing rows.at org.apache.spark.sq…...
Linux系统下U盘打不开: No application is registered as handling this file
简述 系统是之前就安装好使用的Ubuntu14.04,不过由于某些原因只安装到了机械硬盘中;最近新买了一块固态硬盘,所以打算把Ubuntu系统迁移到新的固态硬盘上; 当成功的迁移了系统之后发现其引导有点问题,导致多个系统启动不…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
动态规划-1035.不相交的线-力扣(LeetCode)
一、题目解析 光看题目要求和例图,感觉这题好麻烦,直线不能相交啊,每个数字只属于一条连线啊等等,但我们结合题目所给的信息和例图的内容,这不就是最长公共子序列吗?,我们把最长公共子序列连线起…...
第22节 Node.js JXcore 打包
Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...
