当前位置: 首页 > news >正文

目标检测常用的数据集格式

在目标检测领域,有三种常用的数据集:

数据集标注文件格式bbox格式
vocxmlxmin, ymin, xmax, ymax:
bbox左上角(xmin, ymin)和右下角(xmax, ymax)的坐标
cocojsonx, y, w, h:
bbox左上角坐标(x, y)以及宽(w)和高(h)
yolotxtxcenter, ycenter, w, h:
bbox的中心x坐标(xcenter)、y坐标(ycenter)以及宽度(w)和高度(h)
xcenter, w相对图片实际宽度W做了归一化,即:xcenter/W, w/W
ycenter, h相对图片图片高度H做了归一化,即:ycenter/H, h/H

1. voc格式

1.1 文件结构

该文件结构指的是从 voc 官网下载的数据的文件结构(不同年份的数据集略有不同,但结构大致相同)。

VOCdevkit # 根目录

  • VOCXXXX # 不同年份的数据集,目前有 2005 年到 2012 年的
    • Annotations # 存放 xml 格式的标注文件,与 JPEGImages 下的图片一一对应,每个 xml 文件都描述一张图片的信息
    • ImageSets # 存放的是 txt 文件,文件中每一行包含一张图片的名称以及 ±1 表示正负样本
      • Layout # 可用于检测人体部位的数据(train.txt 用于训练的图片、trainval.txt用于训练和验证的图片合集、val.txt 用于验证的图片,下同)
      • Main # 可用于目标检测的数据
      • Segmentation # 可用于图像分割的数据
    • JPEGImages # 存放图片
    • SegmentationClass # 存放按照类别分割的图片,可用于语义分割
    • SegmentationObject # 存放按照个体分割的图片,可用于实例分割

1.2 标注文件

voc格式的数据集使用 xml 文件标注图片及其bbox信息,一张图片对应个xml文件,以 Main 中其中一个xml文件的部分内容为例:

<annotation><folder>VOC2007</folder>  <!--图片所在文件夹(实际用不到)--><filename>000005.jpg</filename> <!--图片文件名--><source> <!--图片来源--><database>The VOC2007 Database</database><annotation>PASCAL VOC2007</annotation><image>flickr</image><flickrid>325991873</flickrid></source><owner> <!--图片拥有者--><flickrid>archintent louisville</flickrid><name>?</name></owner><size> <!--图片宽度、高度、通道数量--><width>500</width><height>375</height><depth>3</depth></size><segmented>0</segmented> <!--是否用于分割--><object> <!--标注目标1--><name>chair</name> <!--物体类别--><pose>Rear</pose> <!--拍摄角度: front, rear, left, right, unspecified--><truncated>0</truncated> <!--目标是否被截断--><difficult>0</difficult> <!--检测难易程度--><bndbox> <!--标注目标1的 bbox--><xmin>263</xmin><ymin>211</ymin><xmax>324</xmax><ymax>339</ymax></bndbox></object><object> <!--标注目标2的 bbox--><name>chair</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>165</xmin><ymin>264</ymin><xmax>253</xmax><ymax>372</ymax></bndbox></object><!--其余标注信息结构同上-->
</annotation>

2. coco格式

2.1 文件结构

该文件结构指的是从 coco 官网下载的数据的文件结构。

  • annotations_XXXX # 存放 json 格式的标注文件,一个 json 文件里面包含了多张图片的相关信息
    • annotations
      • caption_xxxx.json # 存储图像标注用于描述图像
      • instances_xxxx.json # 用于目标检测的标注信息
      • person_keypoints_xxxx.json # 目标上的关键点信息
  • trainXXX # 存放训练集图片
  • valXXXX # 存放验证集图片

2.2 标注文件

coco格式的数据集使用 json 文件标注图片及其 bbox 信息,与voc格式一张图片对应一个xml文件不同,coco格式中一个 json 文件里面存放了若干张图片的信息。以 instances_xxxx.json 中的部分内容为例:

{"info": { #数据集描述信息"description": "COCO 2017 Dataset", # 数据集描述"url": "http://cocodataset.org", # 数据集地址"version": "1.0", # 数据集版本"year": 2017, # 数据集年份"contributor": "COCO Consortium", # 数据集提供者"date_created": "2017/09/01" # 数据集创建日期},"licenses": [ # 许可协议{"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/", # 协议链接"id": 1, # 协议 id ,下面将会用到"name": "Attribution-NonCommercial-ShareAlike License" # 协议名称}# 其他许可协议格式同上],"images": [ # 图片信息{"license": 4, # 使用的许可协议"file_name": "000000397133.jpg", # 图片文件名"coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg", # 图片在 coco 上的url"height": 427, # 图片高度"width": 640, # 图片宽度"date_captured": "2013-11-14 17:02:52", # 图片获取日期"flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg", 图片在 flickr 上的url"id": 397133 # 图片 id}# 其他图片信息格式同上],"annotations": [ # 标注信息{"segmentation": [ # 实例分割时的边界点坐标[x1, y1, x2, y2 …… xn, yn][510.66,423.01,……,510.45,423.01]],"area": 702.1057499999998, # 区域面积"iscrowd": 0, # 目标是否被遮盖"image_id": 289343, # 标注所在的图片的 id 编号(与上面 images 中的对应)"bbox": [ # bbox框 [左上角x, 左上角y, 宽度, 高度]473.07,395.93,38.65,28.67],"category_id": 18, # 被标注物体对应的类别 id 编号(与下面 categories 中的对应)"id": 1768 # 该标注的 id 编号(唯一)}# 其他标注信息格式同上],"categories": [ # 类别描述{"supercategory": "person", # 该类别所属的大类"id": 1, # 类别 id 编号"name": "person" # 类别名字}# 其他标注信息格式同上]
}

3. yolo格式

3.1 文件结构

使用yolo时,默认的文件结构如下(不同数据集会略有不同,但结构大致相同):

XXXX # 根目录,视使用的数据集决定

  • images # 存放图片,已划分为训练集、验证集、测试集(部分数据集无测试集)
    • train
    • val
    • test
  • labels # 存放的是 txt 文件,每个txt文件对应一张图片,文件中每一行包含一个bbox的相关信息
    • train
    • val
    • test

3.2 标注文件

yolo格式的数据集使用 txt 文件标注图片bbox信息,一张图片对应一个txt文件,txt文件中的每一行都标注了一个bbox的相关信息。标注格式如下:

<类别索引> <bbox的中心x坐标> <bbox的中心y坐标> <bbox的宽度> <bbox的高度>

  • 信息之间以空格分割
  • bbox的中心xy坐标以及宽度、高度都相对于图片的实际宽度W和高度H做了归一化

以其中一个txt文件的部分内容为例:

45 0.479492 0.688771 0.955609 0.5955
# 标注目标1的 bbox的类别索引是45,中心x坐标是0.479492, 中心y坐标是0.688771, 宽度是0.955609, 高度是0.5955
45 0.736516 0.247188 0.498875 0.476417
# 标注目标2的 bbox
# 其余标注信息结构同上

相关文章:

目标检测常用的数据集格式

在目标检测领域&#xff0c;有三种常用的数据集&#xff1a; 数据集标注文件格式bbox格式vocxmlxmin, ymin, xmax, ymax:bbox左上角(xmin, ymin)和右下角(xmax, ymax)的坐标cocojsonx, y, w, h:bbox左上角坐标(x, y)以及宽(w)和高(h)yolotxtxcenter, ycenter, w, h:bbox的中心…...

chrome插件开发实例03-使用 chrome.storage API永久保存数据

目录 防止数据丢失 使用chrome.storage API 功能 功能演示 源代码 manifest.json popup.html...

Segment Anything(SAM) 计算过程

给定输入图像 I ∈ R 3 H W I \in R^{3 \times H \times W} I∈R3HW。给定需要的prompts&#xff1a; M ∈ R 1 H W M \in R^{1 \times H \times W} M∈R1HW&#xff0c;代表图片的前背景信息。 P ∈ R N 2 P \in R^{N \times 2} P∈RN2&#xff0c;其中 N N N 是点的个数…...

Nacos配置文件读取源码解析

Nacos配置文件读取 本篇文章是探究&#xff0c;springboot启动时nacos是如何将配置中心的配置读取到springboot环境中的 PropertySourceLocator org.springframework.cloud.bootstrap.config.PropertySourceLocator 是 springcloud 定义的一个顶级接口&#xff0c;用来定义所…...

Linux0.11内核源码解析-fcntl.c/iotcl.c/stat.c

fcntl fcntl.c实现了文件控制系统调用fcntl和两个文件句柄描述符的复制系统调用dup()和dup2()。 dup返回当前值最小的未用句柄&#xff0c;dup2返回指定新句柄的数值&#xff0c;句柄的复制操作主要用在文件的标准输入、输出重定向和管道方面。 dupfd 复制文件句柄&#xff…...

OpenStack简介

OpenStack简介 目录 OpenStack简介 1、云计算模式2、云计算 虚拟化 openstack之间的关系&#xff1f;3、OpenStack 中有哪些组件&#xff1f;4、计算节点负责虚拟机运行5、网络节点负责对外网络与内网之间的通信 5.1 网络节点仅包含Neutron服务5.2 网络节点包含三个网络端口6、…...

二分法的应用

文章目录 什么是二分法&#x1f3ae;二分查找的优先级二分查找的步骤&#x1f4a5;图解演示&#x1f9e9; 代码演示&#x1fad5;python程序实现&#x1f408;‍⬛C程序实现&#x1f415;‍&#x1f9ba;C程序实现&#x1f42f;Java程序实现&#x1f433; 非常规类二分查找&…...

ChatGPT在大规模数据处理和信息管理中的应用如何?

ChatGPT作为一种强大的自然语言处理模型&#xff0c;在大规模数据处理和信息管理领域有着广泛的应用潜力。它可以利用其文本生成、文本理解和问答等能力&#xff0c;为数据分析、信息提取、知识管理等任务提供智能化的解决方案。以下将详细介绍ChatGPT在大规模数据处理和信息管…...

【算法篇C++实现】五大常规算法

文章目录 &#x1f680;一、分治法⛳&#xff08;一&#xff09;算法思想⛳&#xff08;二&#xff09;相关代码 &#x1f680;二、动态规划算法⛳&#xff08;一&#xff09;算法思想⛳&#xff08;二&#xff09;相关代码 &#x1f680;三、回溯算法⛳&#xff08;一&#xf…...

MySQL和钉钉单据接口对接

MySQL和钉钉单据接口对接 数据源系统:钉钉 钉钉&#xff08;DingTalk&#xff09;是阿里巴巴集团打造的企业级智能移动办公平台&#xff0c;是数字经济时代的企业组织协同办公和应用开发平台。钉钉将IM即时沟通、钉钉文档、钉闪会、钉盘、Teambition、OA审批、智能人事、钉工牌…...

layui的基本使用-日期控件的业务场景使用入门实战案例一

效果镇楼&#xff1b; 1 前端UI层面&#xff1b; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport&…...

【2.1】Java微服务:详解Hystrix

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。 &#x1f34e;个人主页&#xff1a;Meteors.的博客 &#x1f49e;当前专栏&#xff1a; Java微服务 ✨特色专栏&#xff1a; 知识分享 &am…...

Apache2.4源码安装与配置

环境准备 openssl-devel pcre-devel expat-devel libtool gcc libxml2-devel 这些包要提前安装&#xff0c;否则httpd编译安装时候会报错 下载源码、解压缩、软连接 1、wget下载[rootnode01 ~]# wget https://downloads.apache.org/httpd/httpd-2.4.57.tar.gz --2023-07-20 …...

Flume原理剖析

一、介绍 Flume是一个高可用、高可靠&#xff0c;分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各类数据发送方&#xff0c;用于收集数据&#xff1b;同时&#xff0c;Flume提供对数据进行简单处理&#xff0c;并写到各种数据接受方&#xff08;可定制&…...

【leetcode】202. 快乐数(easy)

编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终变不到 1。如果这个过程 结果为 1&#xff0c…...

如何用瀑布图分析公司年报

原创&#xff1a; MicroStrategy微策略中国 , Jiping Sun 微策略企业级数据分析与移动应用9月21日2018年 摘要&#xff1a;利用达析报告开箱即用的瀑布图来展示各个度量值如何增加或减少。下载MicroStrategy Desktop 10.11以上版本&#xff0c;自己动手创建瀑布图。 瀑布图是由…...

Asynq: 基于Redis实现的Go生态分布式任务队列和异步处理库

Asynq[1]是一个Go实现的分布式任务队列和异步处理库&#xff0c;基于redis&#xff0c;类似Ruby的sidekiq[2]和Python的celery[3]。Go生态类似的还有machinery[4]和goworker 同时提供一个WebUI asynqmon[5]&#xff0c;可以源码形式安装或使用Docker image, 还可以和Prometheus…...

保证率计算公式 正态分布

在正态分布中&#xff0c;如果我们要计算一个给定区间内的保证率&#xff0c;可以使用下面的计算公式&#xff1a; 找到给定保证率对应的标准正态分布的z值。可以使用标准正态分布表或计算器进行查询。例如&#xff0c;对于95%的保证率&#xff0c;对应的z值为1.96。 使用z值和…...

docker容器监控:Cadvisor+InfluxDB+Grafana的安装部署

目录 CadvisorInfluxDBGrafan安装部署 1、安装docker-ce 2、阿里云镜像加速器 3、下载组件镜像 4、创建自定义网络 5、创建influxdb容器 6、创建Cadvisor 容器 7、查看Cadvisor 容器&#xff1a; &#xff08;1&#xff09;准备测试镜像 &#xff08;2&#xff09;通…...

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR

论文讲解——TPU-MLIR: A Compiler For TPU Using MLIR https://arxiv.org/pdf/2210.15016.pdf概览模型转换TranslationCanonicalizeLoweringLayerGroup BufferizationCalibration QuantizationCorrectness Check相关资料 https://arxiv.org/pdf/2210.15016.pdf 本文将对TPU…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...